The immersed-body gas-solid interaction model for blast analysis in fractured solid media

被引:24
作者
Yang, P. [1 ]
Xiang, J. [1 ,2 ]
Chen, M. [2 ]
Fang, F. [1 ]
Pavlidis, D. [1 ]
Latham, J. -P. [1 ]
Pain, C. C. [1 ]
机构
[1] Imperial Coll London, Dept Earth Sci & Engn, Appl Modelling & Computat Grp, Prince Consort Rd, London SW7 2BP, England
[2] Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金; 欧盟地平线“2020”; “创新英国”项目;
关键词
Blasting; Cracking and fragmentation; Gas-solid interaction; Immersed-body method; Shock wave modelling; DISCRETE ELEMENT METHOD; INDUCED STRESS WAVES; NUMERICAL-SIMULATION; FINITE-ELEMENT; ROCK MASS; FRAGMENTATION; EXPLOSION; PROPAGATION; SYSTEMS;
D O I
10.1016/j.ijrmms.2016.10.006
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Blast-induced fractures are simulated by a novel gas-solid interaction model, which combines an immersed body method and a cohesive zone fracture model. The approach employs a finite element fluid model and a combined finite-discrete element solid model. This model is fully coupled and simulates the whole blasting process including gas pressure impulse, shock wave propagation, gas expansion, fragmentation and burden movement phases. In the fluid model, the John-Wilkins-Lee equation of state is introduced to resolve the relationship between pressure and density of the highly compressible gas in blasts and explosions. A Q-scheme is used to stabilise the model when solving extremely high pressure situations. Two benchmark tests, blasting cylinder and projectile fire, are used to validate this coupled model. The results of these tests are in good agreement with experimental data. To demonstrate the potential of the proposed method, a blasting engineering simulation with shock waves, fracture propagation, gas-solid interaction and flying fragments is simulated.
引用
收藏
页码:119 / 132
页数:14
相关论文
共 52 条
  • [41] Sanchidrián JA, 2015, CENT EUR J ENERG MAT, V12, P177
  • [42] Two-dimensional dynamic finite element simulation of rock blasting
    Sazid, M.
    Singh, T. N.
    [J]. ARABIAN JOURNAL OF GEOSCIENCES, 2013, 6 (10) : 3703 - 3708
  • [43] Multiphase flow simulation through porous media with explicitly resolved fractures
    Su, K.
    Latham, J. -P.
    Pavlidis, D.
    Xiang, J.
    Fang, F.
    Mostaghimi, P.
    Percival, J. R.
    Pain, C. C.
    Jackson, M. D.
    [J]. GEOFLUIDS, 2015, 15 (04) : 592 - 607
  • [44] A global-local discontinuous Galerkin finite element for finite-deformation analysis of multilayered shells
    Versino, Daniele
    Mourad, Hashem M.
    Williams, Todd O.
    Addessio, Francis L.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 283 : 1401 - 1424
  • [45] Vire A, PHILOS T R SOC LON A
  • [46] Prediction of fragment size and ejection distance of masonry wall under blast load using homogenized masonry material properties
    Wang, Ming
    Hao, Hong
    Ding, Yang
    Li, Zhong-Xian
    [J]. INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2009, 36 (06) : 808 - 820
  • [47] Xian L, 1991, P NEC 91 INT C NONL, P577
  • [48] Xiang J, 2010, P 44 US ROCK MECH S
  • [49] Finite strain, finite rotation quadratic tetrahedral element for the combined finite-discrete element method
    Xiang, Jiansheng
    Munjiza, Antonio
    Latham, John-Paul
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 79 (08) : 946 - 978
  • [50] Simulation of bench blasting considering fragmentation size distribution
    Yan, Peng
    Zhou, Wangxiao
    Lu, Wenbo
    Chen, Ming
    Zhou, Chuangbing
    [J]. INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2016, 90 : 132 - 145