R1 dispersion contrast at high field with fast field-cycling MRI

被引:15
作者
Boedenler, Markus [1 ]
Basini, Martina [2 ,3 ]
Casula, Maria Francesca [4 ,5 ]
Umut, Evrim [6 ]
Goesweiner, Christian [1 ]
Petrovic, Andreas [1 ]
Kruk, Danuta [6 ]
Scharfetter, Hermann [1 ]
机构
[1] Graz Univ Technol, Inst Med Engn, Stremayrgasse 16, A-8010 Graz, Austria
[2] Univ Milan, Phys Dept, Via Celoria 16, I-20133 Milan, Italy
[3] Univ Milan, INSTM, Via Celoria 16, I-20133 Milan, Italy
[4] Univ Cagliari, Dept Chem & Soil Sci, I-09042 Monserrato, CA, Italy
[5] Univ Cagliari, INSTM, I-09042 Monserrato, CA, Italy
[6] Univ Warmia & Mazury, Fac Math & Comp Sci, Sloneczna 54, PL-10710 Olsztyn, Poland
关键词
Fast field-cycling; Dispersion; Delta relaxation enhanced MR; MRI; Quadrupole relaxation enhancement; Contrast agent; RELAXATION ENHANCED MR; MAGNETIC-RESONANCE; AGENTS;
D O I
10.1016/j.jmr.2018.03.010
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Contrast agents with a strong R-1 dispersion have been shown to be effective in generating target-specific contrast in MRI. The utilization of this R-1 field dependence requires the adaptation of an MRI scanner for fast field-cycling (FFC). Here, we present the first implementation and validation of FFC-MRI at a clinical field strength of 3 T. A field-cycling range of +/- 100 mT around the nominal Bo field was realized by inserting an additional insert coil into an otherwise conventional MRI system. System validation was successfully performed with selected iron oxide magnetic nanoparticles and comparison to FFC-NMR relaxometry measurements. Furthermore, we show proof-of-principle R-1 dispersion imaging and demonstrate the capability of generating R-1 dispersion contrast at high field with suppressed background signal. With the presented ready-to-use hardware setup it is possible to investigate MRI contrast agents with a strong R-1 dispersion at a field strength of 3 T. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:68 / 75
页数:8
相关论文
共 28 条
[1]   Design and Construction of a Prototype High-Power B0 Insert Coil for Field-Cycled Imaging in Superconducting MRI Systems [J].
Alford, Jamu K. ;
Scholl, Timothy J. ;
Handler, William B. ;
Chronik, Blaine A. .
CONCEPTS IN MAGNETIC RESONANCE PART B-MAGNETIC RESONANCE ENGINEERING, 2009, 35B (01) :1-10
[2]   Delta Relaxation Enhanced MR: Improving Activation-Specificity of Molecular Probes through R1 Dispersion Imaging [J].
Alford, Jamu K. ;
Rutt, Brian K. ;
Scholl, Timothy J. ;
Handler, William B. ;
Chronik, Blaine A. .
MAGNETIC RESONANCE IN MEDICINE, 2009, 61 (04) :796-802
[3]   Nuclear magnetic relaxation dispersion of murine tissue for development of T1 (R1) dispersion contrast imaging [J].
Araya, Yonathan T. ;
Martinez-Santiesteban, Francisco ;
Handler, William B. ;
Harris, Chad T. ;
Chronik, Blaine A. ;
Scholl, Timothy J. .
NMR IN BIOMEDICINE, 2017, 30 (12)
[4]   Local spin dynamics of iron oxide magnetic nanoparticles dispersed in different solvents with variable size and shape: A 1H NMR study [J].
Basini, M. ;
Orlando, T. ;
Arosio, P. ;
Casula, M. F. ;
Espa, D. ;
Murgia, S. ;
Sangregorio, C. ;
Innocenti, C. ;
Lascialfari, A. .
JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (03)
[5]  
Bernstein MA., 2004, HDB MRI PULSE SEQUEN
[6]   Simple algorithm for the correction of MRI image artefacts due to random phase fluctuations [J].
Broche, Lionel M. ;
Ross, P. James ;
Davies, Gareth R. ;
Lurie, David J. .
MAGNETIC RESONANCE IMAGING, 2017, 44 :55-59
[7]   Detection of osteoarthritis in knee and hip joints by fast field-cycling NMR [J].
Broche, Lionel M. ;
Ashcroft, George P. ;
Lurie, David J. .
MAGNETIC RESONANCE IN MEDICINE, 2012, 68 (02) :358-362
[8]  
Ferrante G., 2012, P INT SOC MAG RESON, V20
[9]  
Gosweiner C., 2017, P INT SOC MAG RESON, V25
[10]  
Harris C. T., 2011, P INT SOC MAG RESON, V19