On the limit distributions of some sums of a random multiplicative function

被引:16
作者
Harper, Adam J. [1 ]
机构
[1] Dept Pure Math & Math Stat, Cambridge CB3 0WA, England
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2013年 / 678卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1515/crelle.2012.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study sums of a random multiplicative function; this is an example, of number-theoretic interest, of sums of products of independent random variables (chaoses). Using martingale methods, we establish a normal approximation for the sum over those n <= x with k distinct prime factors, provided that k = o(log log x) as x -> infinity. We estimate the fourth moments of these sums, and use a conditioning argument to show that if k is of the order of magnitude of log log x then the analogous normal limit theorem does not hold. The methods extend to treat the sum over those n <= x with at most k distinct prime factors, and in particular the sum over all n <= x. We also treat a substantially generalised notion of random multiplicative function.
引用
收藏
页码:95 / 124
页数:30
相关论文
共 20 条
[1]  
[Anonymous], 1961, Publ.Math.Inst Hung. Acad. Sci
[2]  
Blei R, 2004, ARK MAT, V42, P13
[3]  
Chatterjee S., INT MATH RES NOT TO
[4]  
Erdos P., 1985, MATH STAT APPL, P1
[5]  
Feller W., 1971, INTRO PROBABILITY TH
[6]   A NONUNIFORM BOUND ON THE RATE OF CONVERGENCE IN THE MARTINGALE CENTRAL LIMIT-THEOREM [J].
HAEUSLER, E ;
JOOS, K .
ANNALS OF PROBABILITY, 1988, 16 (04) :1699-1720
[7]  
Halasz G., 1983, PUBL MATH ORSAY, P74
[8]  
Hall P., 1980, Martingale Limit Theory and Its Application
[9]  
Hardy G.H., 1917, Quarterly Journal of Mathematics, V48, P76
[10]  
Harper A. J., BOUNDS ON THE SUPREM