Invariance of the cumulant expansion under 1-particle unitary transformations in reduced density matrix theory

被引:21
作者
Benayoun, MD
Lu, AY
Mazziotti, DA
机构
[1] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
[2] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.cplett.2004.02.036
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the iterative solution of the contracted Schrodinger equation (CSE) the 3- and 4-particle reduced density matrices (RDMs) are reconstructed from the 2-RDM via cumulant expansions. Under 1-particle unitary transformations, we establish that the connected (or cumulant) part of an RDM maps onto the connected part of the RDM in the transformed basis set. Consequently, neglecting the connected RDM in the CSE produces an error which is invariant under unitary transformations of the one-particle basis set. We illustrate this result with calculations on beryllium. The present results are applicable to unitary localization in linear-scaling RDM calculations for large molecules. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:485 / 489
页数:5
相关论文
共 43 条
[2]  
BOYS SF, 1966, QUANTUM SCI ATOMS MO, V16, P253
[3]  
Coleman A. J., 1973, Reports on Mathematical Physics, V4, P113, DOI 10.1016/0034-4877(73)90017-7
[4]  
Coleman A. J., 2000, Reduced Density Matrices: Coulson's Challenge
[5]   NECESSARY CONDITIONS FOR N-REPRESENTABILITY OF REDUCED DENSITY MATRICES [J].
COLEMAN, AJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1972, 13 (02) :214-&
[6]   CONVEX STRUCTURE OF ELECTRONS [J].
COLEMAN, AJ .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1977, 11 (06) :907-916
[7]   REDUCED DENSITY OPERATORS AND N-PARTICLE PROBLEM [J].
COLEMAN, AJ .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1978, 13 (01) :67-82
[8]  
COLEMAN AJ, 1981, FORCE CONCEPT CHEM, P418
[9]   APPROXIMATING Q-ORDER REDUCED DENSITY-MATRICES IN TERMS OF THE LOWER-ORDER ONES .2. APPLICATIONS [J].
COLMENERO, F ;
VALDEMORO, C .
PHYSICAL REVIEW A, 1993, 47 (02) :979-985
[10]   APPROXIMATING Q-ORDER REDUCED DENSITY-MATRICES IN TERMS OF THE LOWER-ORDER ONES .1. GENERAL RELATIONS [J].
COLMENERO, F ;
DELVALLE, CP ;
VALDEMORO, C .
PHYSICAL REVIEW A, 1993, 47 (02) :971-978