Grammatical Evolution in a Matrix Factorization Recommender System

被引:4
作者
Kunaver, Matevz [1 ]
Fajfar, Iztok [1 ]
机构
[1] Fac Elect Engn, Trzaska 25, Ljubljana 1000, Slovenia
来源
ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2016 | 2016年 / 9692卷
关键词
Grammatical evolution; Genetic programming; Recommender systems; Collaborative recommender; Matrix factorization;
D O I
10.1007/978-3-319-39378-0_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents preliminary results of using grammatical evolution to evolve expressions that calculate the user/item features used in the matrix factorization recommendation algorithm. The experiment was performed primarily to determine whether grammatical evolution can be applied to this field, and to compare the results with those of the 'traditional' algorithm. For the purpose of the experiment, we used the CoMoDa dataset, which features realistic data collected over five years. The preliminary results are promising and offer a lot of possible future work, some of which is discussed at the end of the paper.
引用
收藏
页码:392 / 400
页数:9
相关论文
共 13 条
  • [1] [Anonymous], 2014, P INT C NEUR INF PRO
  • [2] [Anonymous], 2007, P KDD CUP WORKSH NEW
  • [3] Harper R, 2005, IEEE C EVOL COMPUTAT, P2537
  • [4] MATRIX FACTORIZATION TECHNIQUES FOR RECOMMENDER SYSTEMS
    Koren, Yehuda
    Bell, Robert
    Volinsky, Chris
    [J]. COMPUTER, 2009, 42 (08) : 30 - 37
  • [5] Kosir A, 2011, ELEKTROTEH VESTN, V78, P270
  • [6] KOZA JR, 1994, STAT COMPUT, V4, P87, DOI 10.1007/BF00175355
  • [7] Kunaver M., 2011, HYBRID RECOMMENDER M
  • [8] Liu C., 2013, uS Patent, Patent No. 8,356,086
  • [9] Mnih A., 2008, ADV NEURAL INFORM PR, P1257
  • [10] Grammatical evolution
    O'Neill, M
    Ryan, C
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2001, 5 (04) : 349 - 358