A Ti-site deficient spinel Li2CoTi3O8 anode with superior cycling performance for lithium-ion batteries

被引:5
作者
Wang, Jie [1 ,2 ]
Wen, Yeting [1 ]
Zhao, Hailei [1 ,2 ]
Gao, Chunhui [1 ]
Du, Zhihong [1 ,2 ]
Zhang, Zijia [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
[2] Beijing Key Lab New Energy Mat & Technol, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium cobalt titanium oxide; Ti-site deficiency; Anode; Electrochemcical properties; Lithium-ion batteries; REVERSIBLE CAPACITY; NATURAL GRAPHITE; ENHANCED LITHIUM; STORAGE; INSERTION; NANOPARTICLES; DIFFUSION; LI4TI5O12; TITANATE; CARBON;
D O I
10.1016/j.ssi.2020.115423
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A series of Ti-site deficient Li2CoTi3O8-based materials are synthesized by a simple citric-nitrate method. The elemental ratio is determined by X-ray diffraction (XRD) Rietveld refinement and X-ray photoelectron spectroscopy (XPS) measurement. Ti-deficiency is compensated by the increase of Co element valence, resulting in the excess Co3+/Co2+ and Co4+/Co2+ redox processes during cycling that allows more lithium-ions insertion in the structure, thus endowing the material with a higher theoretical specific capacity. Besides, the Ti-deficiency introduction significantly enhances both the electronic and ionic conductivities and thus the electrode reaction kinetics. The synthesized Li2CoTi2.703O8 anode displays a higher specific capacity (similar to 320 mAh g(-1) at 100 mA g(-1)) and a better rate-capability (185 mAh g(-1) at 8000 mA g(-1); no capacity decay over 500 cycles). The Ti-deficiency design concept in this work can be extended for the development of other energy storage materials with high energy/power density.
引用
收藏
页数:8
相关论文
共 44 条
[1]  
[Anonymous], 1995, Chem. Phys. Lett.
[2]   Nanostructured carbon for energy storage and conversion [J].
Candelaria, Stephanie L. ;
Shao, Yuyan ;
Zhou, Wei ;
Li, Xiaolin ;
Xiao, Jie ;
Zhang, Ji-Guang ;
Wang, Yong ;
Liu, Jun ;
Li, Jinghong ;
Cao, Guozhong .
NANO ENERGY, 2012, 1 (02) :195-220
[3]   Studies of Mg-substituted Li4-xMgxTi5O12 spinel electrodes (0 ≤ x ≤ 1) for lithium batteries [J].
Chen, CH ;
Vaughey, JT ;
Jansen, AN ;
Dees, DW ;
Kahaian, AJ ;
Goacher, T ;
Thackeray, MM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (01) :A102-A104
[4]   Lithium storage mechanism in cubic lithium copper titanate anode material upon lithiation/delithiation process [J].
Chen, Wei ;
Zhou, Zhengrong ;
Liang, Hanfeng ;
Shao, Lianyi ;
Shu, Jie ;
Wang, Zhoucheng .
JOURNAL OF POWER SOURCES, 2015, 281 :56-68
[5]   Observation of the structural changes of sol-gel formed Li2MnTi3O8 during electrochemical reaction by in-situ and ex-situ studies [J].
Chen, Wei ;
Liang, Hanfeng ;
Shao, Lianyi ;
Shu, Jie ;
Wang, Zhoucheng .
ELECTROCHIMICA ACTA, 2015, 152 :187-194
[6]   Lithium storage behavior of manganese based complex spinel titanate as anode material for Li-ion batteries [J].
Chen, Wei ;
Du, Ruihong ;
Liang, Hanfeng ;
Zhou, Zhengrong ;
Shao, Lianyi ;
Shu, Jie ;
Wang, Zhoucheng .
JOURNAL OF POWER SOURCES, 2014, 272 :622-628
[7]   General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation [J].
Cheng, Liang ;
Yan, Jing ;
Zhu, Guan-Nan ;
Luo, Jia-Yan ;
Wang, Cong-Xiao ;
Xia, Yong-Yao .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (03) :595-602
[8]   Graphene-Protected 3D Sb-based Anodes Fabricated via Electrostatic Assembly and Confinement Replacement for Enhanced Lithium and Sodium Storage [J].
Ding, Yuan-Li ;
Wu, Chao ;
Kopold, Peter ;
van Aken, Peter A. ;
Maier, Joachim ;
Yu, Yan .
SMALL, 2015, 11 (45) :6026-6035
[9]   XPS analysis of new lithium cobalt oxide thin-films before and after lithium deintercalation [J].
Dupin, JC ;
Gonbeau, D ;
Benqlilou-Moudden, H ;
Vinatier, P ;
Levasseur, A .
THIN SOLID FILMS, 2001, 384 (01) :23-32
[10]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603