Broadband optical properties of graphene and HOPG investigated by spectroscopic Mueller matrix ellipsometry

被引:78
作者
Song, Baokun [1 ]
Gu, Honggang [1 ]
Zhu, Simin [1 ]
Jiang, Hao [1 ]
Chen, Xiuguo [1 ]
Zhang, Chuanwei [1 ,2 ]
Liu, Shiyuan [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Hubei, Peoples R China
[2] Wuhan Eopt Technol Co Ltd, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Mueller matrix ellipsometry; Graphene; HOPG; Optical constants; Anisotropy; LARGE-AREA; MONOLAYER; FILMS;
D O I
10.1016/j.apsusc.2018.01.051
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Optical properties of mono-graphene fabricated by chemical vapor deposition (CVD) and highly oriented pyrolytic graphite (HOPG) are comparatively studied by Mueller matrix ellipsometry (MME) over an ultra-wide energy range of 0.73-6.42 eV. A multilayer stacking model is constructed to describe the CVD mono-graphene, in which the roughness of the glass substrate and the water adsorption on the graphene are considered. We introduce a uniaxial anisotropic dielectric model to parameterize the optical constants of both the graphene and the HOPG. With the established models, broadband optical constants of the graphene and the HOPG are determined from the Mueller matrix spectra based on a point-by-point method and a non-linear regression method, respectively. Two significant absorption peaks at 4.75 eV and 6.31 eV are observed in the extinction coefficient spectra of the mono-graphene, which can be attributed to the von-Hove singularity (i.e., the pi-to-pi* exciton transition) near the M point and the sigma-to-sigma* exciton transition near the Gamma point of the Brillouin zone, respectively. Comparatively, only a major absorption peak at 4.96 eV appears in the ordinary extinction coefficient spectra of the HOPG, which is mainly formed by the pi-to-pi* interband transition. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1079 / 1087
页数:9
相关论文
共 45 条
[1]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[2]   Optical constants of graphene layers in the visible range [J].
Bruna, M. ;
Borini, S. .
APPLIED PHYSICS LETTERS, 2009, 94 (03)
[3]   Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene [J].
Butler, Sheneve Z. ;
Hollen, Shawna M. ;
Cao, Linyou ;
Cui, Yi ;
Gupta, Jay A. ;
Gutierrez, Humberto R. ;
Heinz, Tony F. ;
Hong, Seung Sae ;
Huang, Jiaxing ;
Ismach, Ariel F. ;
Johnston-Halperin, Ezekiel ;
Kuno, Masaru ;
Plashnitsa, Vladimir V. ;
Robinson, Richard D. ;
Ruoff, Rodney S. ;
Salahuddin, Sayeef ;
Shan, Jie ;
Shi, Li ;
Spencer, Michael G. ;
Terrones, Mauricio ;
Windl, Wolfgang ;
Goldberger, Joshua E. .
ACS NANO, 2013, 7 (04) :2898-2926
[4]  
Carvalho A., 2016, NAT REV MATER, V1, P1
[5]   Extracting the complex optical conductivity of mono- and bilayer graphene by ellipsometry [J].
Chang, You-Chia ;
Liu, Chang-Hua ;
Liu, Che-Hung ;
Zhong, Zhaohui ;
Norris, Theodore B. .
APPLIED PHYSICS LETTERS, 2014, 104 (26)
[6]   SYNTHETIC GRAPHENE GROWN BY CHEMICAL VAPOR DEPOSITION ON COPPER FOILS [J].
Chung, Ting Fung ;
Shen, Tian ;
Cao, Helin ;
Jauregui, Luis A. ;
Wu, Wei ;
Yu, Qingkai ;
Newell, David ;
Chen, Yong P. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (10)
[7]   Optical properties of graphene [J].
Falkovsky, L. A. .
INTERNATIONAL CONFERENCE ON THEORETICAL PHYSICS 'DUBNA-NANO2008', 2008, 129
[8]   Optical far-infrared properties of a graphene monolayer and multilayer [J].
Falkovsky, L. A. ;
Pershoguba, S. S. .
PHYSICAL REVIEW B, 2007, 76 (15)
[9]  
Feng BJ, 2016, NAT CHEM, V8, P564, DOI [10.1038/nchem.2491, 10.1038/NCHEM.2491]
[10]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)