Glass-Based Transparent Conductive Electrode: Its Application to Visible-to-Ultraviolet Light-Emitting Diodes

被引:21
作者
Lee, Tae Ho [1 ]
Kim, Kyeong Heon [1 ]
Lee, Byeong Ryong [1 ]
Park, Ju Hyun [1 ]
Schubert, E. Fred [2 ]
Kim, Tae Geun [1 ]
机构
[1] Korea Univ, Sch Elect Engn, Anam Dong 5 Ga, Seoul 136701, South Korea
[2] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, 110 Eighth St, Troy, NY 12180 USA
基金
新加坡国家研究基金会;
关键词
light-emitting diode; conducting filament; transparent conductive electrode; wide-bandgap; ultraviolet; UNIVERSAL METHOD; SOLAR-CELL; EFFICIENT; GRAPHENE; FILMS; LAYER;
D O I
10.1021/acsami.6b12767
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nitride-based ultraviolet light-emitting diodes (UV LEDs) are promising replacements for conventional UV lamps. However, the external quantum efficiency of UV LEDs is much lower than for visible LEDs due to light absorption in the p-GaN contact and electrode layers, along with p-AlGaN growth and doping issues. To minimize such absorption, we should obtain direct ohmic contact to p-AlGaN using UV-transparent ohmic electrodes and not use p-GaN as a contact layer. Here, we propose a glass-based transparent conductive electrode (TCE) produced using electrical breakdown (EBD) of an AlN thin film, and we apply the thin film to four (Al)GaN-based visible and UV LEDs with thin buffer layers for current spreading and damage protection. Compared to LEDs with optimal ITO contacts, our LEDs with AlN TCEs exhibit a lower forward voltage, higher light output power, and brighter light emission for all samples. The ohmic transport mechanism for current injection and spreading from the metal electrode to p-(Al)GaN layer via AlN TCE is also investigated by analyzing the p-(Al)GaN surface before and after EBD.
引用
收藏
页码:35668 / 35677
页数:10
相关论文
共 39 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]
[2]   Carbon nanotube network electrodes enabling efficient organic solar cells without a hole transport layer [J].
Barnes, Teresa M. ;
Bergeson, Jeremy D. ;
Tenent, Robert C. ;
Larsen, Brian A. ;
Teeter, Glenn ;
Jones, Kim M. ;
Blackburn, Jeffrey L. ;
van de Lagemaat, Jao .
APPLIED PHYSICS LETTERS, 2010, 96 (24)
[3]   AlGaN-based ultraviolet light-emitting diodes using fluorine-doped indium tin oxide electrodes [J].
Chae, Dong Ju ;
Kim, Dong Yoon ;
Kim, Tae Geun ;
Sung, Yun Mo ;
Kim, Moon Doeck .
APPLIED PHYSICS LETTERS, 2012, 100 (08)
[4]   Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics [J].
De Arco, Lewis Gomez ;
Zhang, Yi ;
Schlenker, Cody W. ;
Ryu, Koungmin ;
Thompson, Mark E. ;
Zhou, Chongwu .
ACS NANO, 2010, 4 (05) :2865-2873
[5]   Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios [J].
De, Sukanta ;
Higgins, Thomas M. ;
Lyons, Philip E. ;
Doherty, Evelyn M. ;
Nirmalraj, Peter N. ;
Blau, Werner J. ;
Boland, John J. ;
Coleman, Jonathan N. .
ACS NANO, 2009, 3 (07) :1767-1774
[6]   Modeling Light Trapping in Nanostructured Solar Cells [J].
Ferry, Vivian E. ;
Polman, Albert ;
Atwater, Harry A. .
ACS NANO, 2011, 5 (12) :10055-10064
[7]   Resistance Switching and Formation of a Conductive Bridge in Metal/Binary Oxide/Metal Structure for Memory Devices [J].
Fujiwara, Kohei ;
Nemoto, Takumi ;
Rozenberg, Marcelo J. ;
Nakamura, Yoshinobu ;
Takagi, Hidenori .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2008, 47 (08) :6266-6271
[8]  
Garnett EC, 2012, NAT MATER, V11, P241, DOI [10.1038/NMAT3238, 10.1038/nmat3238]
[9]   Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography [J].
Guo, Chuan Fei ;
Sun, Tianyi ;
Liu, Qihan ;
Suo, Zhigang ;
Ren, Zhifeng .
NATURE COMMUNICATIONS, 2014, 5
[10]  
Han TH, 2012, NAT PHOTONICS, V6, P105, DOI [10.1038/NPHOTON.2011.318, 10.1038/nphoton.2011.318]