Numerical radius inequalities and its applications in estimation of zeros of polynomials

被引:55
作者
Bhunia, Pintu [1 ]
Bag, Santanu [2 ]
Paul, Kallol [1 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, India
[2] Vivekananda Coll Women, Dept Math, Kolkata 700008, India
关键词
Numerical radius; Hilbert space; Bounded linear operator; Zeros of polynomial; LOWER BOUNDS;
D O I
10.1016/j.laa.2019.03.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present some upper and lower bounds for the numerical radius of a bounded linear operator defined on complex Hilbert space, which improves on the existing upper and lower bounds. We also present an upper bound for the spectral radius of sum of product of n pairs of operators. As an application of the results obtained, we provide a better estimation for the zeros of a given polynomial. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:166 / 177
页数:12
相关论文
共 17 条
[1]   UPPER AND LOWER BOUNDS FOR THE NUMERICAL RADIUS WITH AN APPLICATION TO INVOLUTION OPERATORS [J].
Abu-Omar, Amer ;
Kittaneh, Fuad .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2015, 45 (04) :1055-1065
[2]   Numerical radius inequalities for n x n operator matrices [J].
Abu-Omar, Amer ;
Kittaneh, Fuad .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 468 :18-26
[3]   ESTIMATES FOR THE NUMERICAL RADIUS AND THE SPECTRAL RADIUS OF THE FROBENIUS COMPANION MATRIX AND BOUNDS FOR THE ZEROS OF POLYNOMIALS [J].
Abu-Omar, Amer ;
Kittaneh, Fuad .
ANNALS OF FUNCTIONAL ANALYSIS, 2014, 5 (01) :56-62
[4]   General numerical radius inequalities for matrices of operators [J].
Al-Dolat, Mohammed ;
Al-Zoubi, Khaldoun ;
Ali, Mohammed ;
Bani-Ahmad, Feras .
OPEN MATHEMATICS, 2016, 14 :109-117
[5]   The numerical radius and bounds for zeros of a polynomial [J].
Alpin, YA ;
Chien, MT ;
Yeh, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (03) :725-730
[6]   Numerical radius inequalities for operator matrices [J].
Bani-Domi, Wathiq ;
Kittaneh, Fuad .
LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (04) :421-427
[7]  
Dragomir SS, 2008, TAMKANG J MATH, V39, P1
[8]   UNITARILY-INVARIANT OPERATOR NORMS [J].
FONG, CK ;
HOLBROOK, JAR .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1983, 35 (02) :274-299
[9]   BUZANO INEQUALITY AND BOUNDS FOR ROOTS OF ALGEBRAIC EQUATIONS [J].
FUJII, M ;
KUBO, F .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 117 (02) :359-361
[10]  
Horn A., 2013, Matrix Analysis