Hyperspectral data clustering based on density analysis ensemble

被引:21
作者
Chen, Yushi [1 ]
Ma, Shunli [1 ]
Chen, Xi [1 ]
Ghamisi, Pedram [2 ,3 ]
机构
[1] Harbin Inst Technol, Dept Informat Engn, Harbin, Peoples R China
[2] German Aerosp Ctr DLR, Remote Sensing Technol Inst IMF, Wessling, Germany
[3] Tech Univ Munich, Signal Proc Earth Observat, Munich, Germany
基金
中国国家自然科学基金;
关键词
FUZZY C-MEANS;
D O I
10.1080/2150704X.2016.1249295
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In this letter, we present a new hyperspectral data-clustering method, named density analysis ensemble, from a different perspective. Instead of distance-based metrics in traditional clustering methods, we use density analysis for hyperspectral data clustering. Moreover, in order to improve the performance, we use the random subspace ensemble method to formulate a set of clustering systems. The final results are retrieved through majority voting. Compared to the k-means method, the overall accuracies have been improved by 7.05% and 6.93% for the Salinas and Pavia University data sets, respectively.
引用
收藏
页码:194 / 203
页数:10
相关论文
共 19 条
[1]  
[Anonymous], 2013, REMOTE SENSING DIGIT, DOI [https://doi.org/10.1007/978-3-642-30062-2, DOI 10.1007/978-3-642-30062-2]
[2]  
Benediktsson JA, 2015, ARTECH HSE REMOTE SE, P1
[3]  
Brown G, 2010, LECT NOTES COMPUT SC, V5997, P124, DOI 10.1007/978-3-642-12127-2_13
[4]   Phase-correlation-based hyperspectral image classification using multiple class representatives obtained with k-means clustering [J].
Cesmeci, D. ;
Gullu, M. K. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2009, 30 (14) :3827-3834
[5]   Optimizing Subspace SVM Ensemble for Hyperspectral Imagery Classification [J].
Chen, Yushi ;
Zhao, Xing ;
Lin, Zhouhan .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (04) :1295-1305
[6]   Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy [J].
Foody, GM .
PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2004, 70 (05) :627-633
[7]   LARGE SCALE HYPERSPECTRAL DATA SEGMENTATION BY RANDOM SPATIAL SUBSPACE CLUSTERING [J].
Guo, Yi ;
Gao, Junbin ;
Li, Feng .
2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, :3487-3490
[8]   A New Weighted Fuzzy C-Means Clustering Algorithm for Remotely Sensed Image Classification [J].
Hung, Chih-Cheng ;
Kulkarni, Sameer ;
Kuo, Bor-Chen .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2011, 5 (03) :543-553
[9]   A Novel Ranking-Based Clustering Approach for Hyperspectral Band Selection [J].
Jia, Sen ;
Tang, Guihua ;
Zhu, Jiasong ;
Li, Qingquan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (01) :88-102
[10]  
Knauer Uwe, 2013, Multiple Classifier Systems. 11th International Workshop, MCS 2013. Proceedings, P121, DOI 10.1007/978-3-642-38067-9_11