Upper transversals in hypergraphs

被引:4
作者
Henning, Michael A. [1 ]
Yeo, Anders [1 ,2 ]
机构
[1] Univ Johannesburg, Dept Pure & Appl Math, ZA-2006 Auckland Pk, South Africa
[2] Univ Southern Denmark, Dept Math & Comp Sci, Campusvej 55, DK-5230 Odense M, Denmark
关键词
TOTAL DOMINATION; ALGORITHM; NUMBERS;
D O I
10.1016/j.ejc.2019.01.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set S of vertices in a hypergraph H is a transversal if it has a nonempty intersection with every edge of H. For k >= 1, if H is a hypergraph with every edge of size at least k, then a k-transversal in H is a transversal that intersects every edge of H in at least k vertices. In particular, a 1-transversal is a transversal. The upper k-transversal number gamma(k)(H) of H is the maximum cardinality of a minimal k-transversal in H. We obtain asymptotically best possible lower bounds on gamma(k)(H) for uniform hypergraphs H. More precisely, we show that for r >= 2 and for every integer k is an element of[r], if H is a connected r-uniform hypergraph with n vertices, then gamma(k)(H) > 2/3 ((r-k+1)root n) For r > k >= 1 and epsilon > 0, we show that there exist infinitely many r-uniform hypergraphs, H-r,H-k'* of order n and a function f(r, k) of r and k satisfying gamma(k)(H-r,H-k*) < (1 + epsilon) . f(r, k) . (r-k+1)root n. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 16 条
[1]   TRANSVERSAL NUMBERS OF UNIFORM HYPERGRAPHS [J].
ALON, N .
GRAPHS AND COMBINATORICS, 1990, 6 (01) :1-4
[2]  
Berge C., 1989, MATH LIB, V45
[3]   On colouring the nodes of a network [J].
Brooks, RL .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1941, 37 :194-197
[4]  
Bujtás C, 2014, ELECTRON J COMB, V21
[5]   Transversals and domination in uniform hypergraphs [J].
Bujtas, Csilla ;
Henning, Michael A. ;
Tuza, Zsolt .
EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (01) :62-71
[6]   SMALL TRANSVERSALS IN HYPERGRAPHS [J].
CHVATAL, V ;
MCDIARMID, C .
COMBINATORICA, 1992, 12 (01) :19-26
[7]  
Henning MA, 2018, ELECTRON J COMB, V25
[8]   A characterization of hypergraphs that achieve equality in the Chvatal-McDiarmid Theorem [J].
Henning, Michael A. ;
Loewenstein, Christian .
DISCRETE MATHEMATICS, 2014, 323 :69-75
[9]   Hypergraphs with large transversal number [J].
Henning, Michael A. ;
Yeo, Anders .
DISCRETE MATHEMATICS, 2013, 313 (08) :959-966
[10]   STRONG TRANSVERSALS IN HYPERGRAPHS AND DOUBLE TOTAL DOMINATION IN GRAPHS [J].
Henning, Michael A. ;
Yeo, Anders .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (04) :1336-1355