Solution of a Groundwater Control Problem with Implicit Filtering

被引:10
作者
Battermann, Astrid [1 ]
Gablonsky, Joerg M. [2 ]
Patrick, Alton [3 ]
Kelley, Carl T. [4 ,5 ]
Kavanagh, Kathleen R. [4 ,5 ]
Coffey, Todd [6 ]
Miller, Cass T. [7 ]
机构
[1] Univ Trier, Fachbereich 4, Abt Math, D-54286 Trier, Germany
[2] Boeing Co, Seattle, WA 98124 USA
[3] Shodor Educ Fdn Inc, Durham, NC 27705 USA
[4] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[5] N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
[6] Sandia Natl Labs, Albuquerque, NM 87185 USA
[7] Univ N Carolina, Dept Environm Sci & Engn, Chapel Hill, NC 27599 USA
关键词
implicit filtering; groundwater flow and transport; optimal control; parallel algorithms;
D O I
10.1023/A:1020967403960
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we describe the application of a parallel implementation of the implicit filtering algorithm to a control problem from hydrology. We seek to control the temperature at a group of drinking water wells by placing barrier wells between the drinking water wells and a well that injects heated water from an industrial site.
引用
收藏
页码:189 / 199
页数:11
相关论文
共 50 条
[41]   Asymptotic Expansion of the Solution of a Singularly Perturbed Optimal Control Problem with Elliptical Control Constraints [J].
A. R. Danilin ;
A. A. Shaburov .
Automation and Remote Control, 2022, 83 :1-16
[42]   Approximate Solution of an Optimal Control Problem with Linear Nonhomogeneous Control System in Hilbert Space [J].
Kurdyumov, V. P. .
IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2010, 10 (03) :3-14
[43]   Asymptotic Expansion of the Solution of a Singularly Perturbed Optimal Control Problem with Elliptical Control Constraints [J].
Danilin, A. R. ;
Shaburov, A. A. .
AUTOMATION AND REMOTE CONTROL, 2022, 83 (01) :1-16
[44]   Convergence of the implicit filtering method for constrained optimization of noisy functions [J].
Xiu, Naihua ;
Zhang, Jianzhong ;
Wang, Zhouhong .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2007, 28 (1-2) :127-147
[45]   Optimal Control Problem and Its Solution in Class of Feasible Control Functions by Advanced Model of Control Object [J].
Diveev, Askhat ;
Sofronova, Elena .
MATHEMATICS, 2025, 13 (04)
[46]   A Solution of Synthesized Optimal Control Problem for Interaction of Robots by Evolutionary Computations [J].
Diveev, Askhat ;
Sofronova, Elena ;
Shmalko, Elizaveta .
PROCEEDINGS OF THE 2019 14TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2019), 2019, :756-761
[47]   Asymptotic expansion of a solution to the problem of optimal control of a bounded flow at a boundary [J].
Zorin, A. P. .
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2013, 19 (01) :115-120
[48]   EXISTENCE AND UNIQUENESS OF THE SOLUTION OF THE ADJOINT SYSTEM IN ONE PROBLEM OF OPTIMAL CONTROL [J].
Mussabekov, Kalimulla Sultanovich .
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 :1065-1079
[49]   Asymptotics of the Solution of a Bisingular Optimal Boundary Control Problem in a Bounded Domain [J].
A. R. Danilin .
Computational Mathematics and Mathematical Physics, 2018, 58 :1737-1747
[50]   MEMORYLESS SOLUTION TO THE OPTIMAL CONTROL PROBLEM FOR LINEAR SYSTEMS WITH DELAYED INPUT [J].
Carravetta, Francesco ;
Palumbo, Pasquale ;
Pepe, Pierdomenico .
KYBERNETIKA, 2013, 49 (04) :568-589