Ultrafast and Multicolor Luminescence Switching in a Lanthanide- Based Hydrochromic Perovskite

被引:67
作者
Chen, Jiangkun [1 ,2 ]
Guo, Yang [1 ,2 ]
Chen, Bing [1 ,2 ]
Zheng, Weilin [1 ,2 ]
Wang, Feng [1 ,2 ]
机构
[1] City Univ Hong Kong, Dept Mat Sci & Engn, Hong Kong 999077, Peoples R China
[2] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
关键词
INKS;
D O I
10.1021/jacs.2c10809
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hydrochromic materials characterized by noticeable color change upon water exposure have attracted pervasive attention for their frontier applications in sensing and information technologies. However, existing hydrochromic materials typically suffer from a slow hydrochromic response as well as limited stability and color tunability. This work describes a novel hydrochromic perovskite crystal composed of zero-dimensional Cs3TbF6:Eu3+, which displays switchable luminescence due to the constituent Tb3+ and Eu3+ ions. Mechanistic investigation reveals that the hydrochromic property stems from a water-induced phase transformation into a one-dimensional structure through a CsF-stripping process. The phase transformation triggers energy coupling between Tb3+ and Eu3+ ions in adjacent lanthanide halide polyhedra, resulting in an emission color change from green to orange. Notably, the phase transformation is ultrafast (20 ms) and reversible, and the emission color in each phase can be fine-tuned by controlling the Eu3+ doping concentration along with Y3+ co-doping. The advances in these hydrochromic luminescent materials offer exciting opportunities for information security and data storage.
引用
收藏
页码:22295 / 22301
页数:7
相关论文
共 34 条
[1]   A New Anti-Counterfeiting Feature Relying on Invisible Luminescent Full Color Images Printed with Lanthanide-Based Inks [J].
Andres, Julien ;
Hersch, Roger D. ;
Moser, Jacques-Edouard ;
Chauvin, Anne-Sophie .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (32) :5029-5036
[2]   ENERGY TRANSFER IN OXIDIC PHOSPHORS [J].
BLASSE, G .
PHYSICS LETTERS A, 1968, A 28 (06) :444-&
[3]   Two New Adenine-Based Co(II) Coordination Polymers: Synthesis, Crystal Structure, Coordination Modes, and Reversible Hydrochromic Behavior [J].
Burneo, Ivan ;
Stylianou, Kyriakos C. ;
Rodriguez-Hermida, Sabina ;
Juanhuix, Jordi ;
Fontrodona, Xavier ;
Imaz, Inhar ;
Maspoch, Daniel .
CRYSTAL GROWTH & DESIGN, 2015, 15 (07) :3182-3189
[4]   Multiexcitonic Emission in Zero-Dimensional Cs2ZrCl6:Sb3+ Perovskite Crystals [J].
Chen, Bing ;
Guo, Yang ;
Wang, Yuan ;
Liu, Zhen ;
Wei, Qi ;
Wang, Shixun ;
Rogach, Andrey L. ;
Xing, Guichuan ;
Shi, Peng ;
Wang, Feng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (42) :17599-17606
[5]   Thermochromic Perovskite Inks for Reversible Smart Window Applications [J].
De Bastiani, Michele ;
Saidaminov, Makhsud I. ;
Dursun, Ibrahim ;
Sinatra, Lutfan ;
Peng, Wei ;
Buttner, Ulrich ;
Mohammed, Omar F. ;
Bakr, Osman M. .
CHEMISTRY OF MATERIALS, 2017, 29 (08) :3367-3370
[6]   Highly Reversible Moisture-Induced Bright Self-Trapped Exciton Emissions in a Copper-Based Organic-Inorganic Hybrid Metal Halide [J].
Fang, Shaofan ;
Zhou, Bo ;
Li, Huixia ;
Hu, Hanlin ;
Zhong, Haizhe ;
Li, Henan ;
Shi, Yumeng .
ADVANCED OPTICAL MATERIALS, 2022, 10 (15)
[7]   Fluorescent conjugated polyelectrolytes for biomacromolecule detection [J].
Feng, Fude ;
He, Fang ;
An, Lingling ;
Wang, Shu ;
Li, Yuhang ;
Zhu, Daoben .
ADVANCED MATERIALS, 2008, 20 (15) :2959-2964
[8]   Reversible Phase Transitions of all Inorganic Copper-Based Perovskites: Water-Triggered Fluorochromism for Advanced Anticounterfeiting Applications [J].
Feng, Jilin ;
Wang, Jiaxin ;
Wang, Di ;
Han, Meina ;
Qian, Guangsheng ;
Wu, Fan ;
Lin, Qian ;
Hu, Zhanggui .
ACS APPLIED ELECTRONIC MATERIALS, 2022, 4 (01) :225-232
[9]   Highly efficient Sb3+ emitters in 0D cesium indium chloride nanocrystals with switchable photoluminescence through water-triggered structural transformation [J].
Gong, Zhongliang ;
Zheng, Wei ;
Huang, Ping ;
Cheng, Xingwen ;
Zhang, Wen ;
Zhang, Meiran ;
Han, Siyuan ;
Chen, Xueyuan .
NANO TODAY, 2022, 44
[10]  
Govorov A., 2016, Understanding and Modeling Forster-type Resonance Energy Transfer (FRET), V1