Estimates of bottom flows and bottom boundary layer dissipation of the oceanic general circulation from global high-resolution models

被引:70
作者
Arbic, Brian K. [1 ]
Shriver, Jay F. [2 ]
Hogan, Patrick J. [2 ]
Hurlburt, Harley E. [2 ]
McClean, Julie L. [3 ]
Metzger, E. Joseph [2 ]
Scott, Robert B. [1 ]
Sen, Ayon [1 ,4 ]
Smedstad, Ole Martin [5 ]
Wallcraft, Alan J. [2 ]
机构
[1] Univ Texas Austin, Inst Geophys, Jackson Sch Geosci, Austin, TX 78758 USA
[2] USN, Res Lab, Div Oceanog, Stennis Space Ctr, MS 39529 USA
[3] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
[4] Westwood High Sch, Austin, TX USA
[5] Planning Syst Inc, Stennis Space Ctr, MS 39529 USA
基金
美国国家科学基金会;
关键词
LIMITED-AREA MODEL; GULF-STREAM; GEOSTROPHIC TURBULENCE; 1/64-DEGREES RESOLUTION; TIDAL DISSIPATION; ENERGY-BALANCE; ATLANTIC-OCEAN; NORTH-ATLANTIC; KINETIC-ENERGY; ALTIMETER DATA;
D O I
10.1029/2008JC005072
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
This paper (1) compares the bottom flows of three existing high-resolution global simulations of the oceanic general circulation to near-bottom flows in a current meter database and (2) estimates, from the simulations, the global energy dissipation rate of the general circulation by quadratic bottom boundary layer drag. The study utilizes a data-assimilative run of the Naval Research Laboratory Layered Ocean Model (NLOM), a nonassimilative run of NLOM, and a nonassimilative run of the Parallel Ocean Program z-level ocean model. Generally speaking, the simulations have some difficulty matching the flows in individual current meter records. However, averages of model values of |u(b)|(3) (the time average of the cube of bottom velocity, which is proportional to the dissipation rate) computed over all the current meter sites agree to within a factor of 2.7 or better with averages computed from the current meters, at least in certain depth ranges. The models therefore likely provide reasonable order-of-magnitude estimates of areally integrated dissipation by bottom drag. Global dissipation rates range from 0.14 to 0.65 TW, suggesting that bottom drag represents a substantial sink of the similar to 1 TW wind-power transformed into geostrophic motions.
引用
收藏
页数:17
相关论文
共 78 条
  • [1] Arbic BK, 2004, J PHYS OCEANOGR, V34, P2257, DOI 10.1175/1520-0485(2004)034<2257:BUGTIT>2.0.CO
  • [2] 2
  • [3] Coherent vortices and kinetic energy ribbons in asymptotic, quasi two-dimensional f-plane turbulence
    Arbic, BK
    Flierl, GR
    [J]. PHYSICS OF FLUIDS, 2003, 15 (08) : 2177 - 2189
  • [4] On quadratic bottom drag, geostrophic turbulence, and oceanic mesoscale eddies
    Arbic, Brian K.
    Scott, Robert B.
    [J]. JOURNAL OF PHYSICAL OCEANOGRAPHY, 2008, 38 (01) : 84 - 103
  • [5] Cascade inequalities for forced - Dissipated geostrophic turbulence
    Arbic, Brian K.
    Flierl, Glenn R.
    Scott, Robert B.
    [J]. JOURNAL OF PHYSICAL OCEANOGRAPHY, 2007, 37 (06) : 1470 - 1487
  • [6] Control of large-scale heat transport by small-scale mixing
    Cessi, Paola
    Young, W. R.
    Polton, Jeff A.
    [J]. JOURNAL OF PHYSICAL OCEANOGRAPHY, 2006, 36 (10) : 1877 - 1894
  • [7] Friction and mixing in the Faroe Bank Channel outflow
    Duncan, LM
    Bryden, HL
    Cunningham, SA
    [J]. OCEANOLOGICA ACTA, 2003, 26 (5-6) : 473 - 486
  • [8] Semi-diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry
    Egbert, GD
    Ray, RD
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (17) : 9 - 1
  • [9] Ocean Circulation Kinetic Energy: Reservoirs, Sources, and Sinks
    Ferrari, Raffaele
    Wunsch, Carl
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 2009, 41 : 253 - 282
  • [10] Fox DN, 2002, J ATMOS OCEAN TECH, V19, P240, DOI 10.1175/1520-0426(2002)019<0240:TMODAS>2.0.CO