Generalized finite element analysis using the preconditioned conjugate gradient method

被引:11
作者
Kim, Dae-Jin [1 ]
Hong, Sung-Gul [2 ]
Duarte, C. Armando [3 ]
机构
[1] Kyung Hee Univ, Dept Architectural Engn, Yongin 446701, Gyeonggi Do, South Korea
[2] Seoul Natl Univ, Dept Architecture & Architectural Engn, Seoul 151742, South Korea
[3] Univ Illinois, Dept Civil & Environm Engr, Urbana, IL 61801 USA
基金
新加坡国家研究基金会;
关键词
Conjugate gradient method; Preconditioner; Generalized finite element method; Global-local enrichment; Convergence; Fracture; 2-SCALE APPROACH; MECHANICS; FEM;
D O I
10.1016/j.apm.2015.04.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper introduces the generalized finite element method with global local enrichment functions using the preconditioned conjugate gradient method. The proposed methodology is able to generate enrichment functions for problems where limited a priori knowledge on the solution is available and to utilize a preconditioner and initial guess of high quality with an addition of only small computational cost. Thus, it is very effective to analyze problems where a complex behavior is locally exhibited. Several numerical experiments are performed to confirm its effectiveness and show that it is computationally more efficient than the analysis utilizing direct methods such as the LU and Cholesky factorization methods. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:5837 / 5848
页数:12
相关论文
共 31 条
[1]  
[Anonymous], 2002, APPROXIMATION THEORY
[2]  
[Anonymous], 2014, THESIS U ILLINOIS UR
[3]   A stopping criterion for the conjugate gradient algorithm in a finite element method framework [J].
Arioli, M .
NUMERISCHE MATHEMATIK, 2004, 97 (01) :1-24
[4]   The splitting method as a tool for multiple damage analysis [J].
Babuska, I ;
Andersson, B .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (04) :1114-1145
[5]  
Babuska I., 2003, Acta Numerica, V12, P1, DOI 10.1017/S0962492902000090
[6]   Stable Generalized Finite Element Method (SGFEM) [J].
Babuska, I. ;
Banerjee, U. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 201 :91-111
[7]  
Babuska I, 1997, INT J NUMER METH ENG, V40, P727, DOI 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO
[8]  
2-N
[9]  
Bathe K.-J., 2006, Finite Element Procedures in Engineering Analysis
[10]  
Belytschko T, 2001, INT J NUMER METH ENG, V50, P993, DOI 10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO