LOW REGULARITY WELL-POSEDNESS FOR THE ONE-DIMENSIONAL DIRAC-KLEIN-GORDON SYSTEM

被引:0
作者
Pecher, Hartmut [1 ]
机构
[1] Berg Univ Wuppertal, Fachbereich Math & Naturwissensch, D-42097 Wuppertal, Germany
关键词
Dirac-Klein-Gordon system; well-posedness; Fourier restriction norm method;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Local well-posedness for Dirac-Klein-Gordon equations is proven in one space dimension, where the Dirac part belongs to H-1/4+is an element of and the Klein-Gordon part to H1/4-is an element of for 0 < is an element of < 1/4, and global well-posedness, if the Dirac part belongs to the charge class L-2 and the Klein-Gordon part to II kappa with 0 < kappa < 1/2. The proof uses a null structure in both nonlinearities detected by d'Ancona, Foschi and Selberg and bilinear estimates in spaces of Bourgain-Klainerman-Machedon type.
引用
收藏
页数:13
相关论文
共 10 条
[1]  
Beals M, 1996, COMMUN PART DIFF EQ, V21, P79
[2]   A new proof of global existence for the Dirac Klein-Gordon equations in one space dimension [J].
Bournaveas, N .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 173 (01) :203-213
[3]  
Bournaveas N, 2006, DIFFER INTEGRAL EQU, V19, P211
[4]  
CHADAM JM, 1974, ARCH RATION MECH AN, V54, P223, DOI 10.1007/BF00250789
[5]  
Chadam JM., 1973, J FUNCT ANAL, V13, P173
[6]  
DANCONA P, J EMS IN PRESS
[7]  
Fang YF, 2004, TAIWAN J MATH, V8, P33
[8]  
Fang Yung-Fu, 2004, ELECTRON J DIFFER EQ, V2004, P1
[9]   On the Cauchy problem for the Zakharov system [J].
Ginibre, J ;
Tsutsumi, Y ;
Velo, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 151 (02) :384-436
[10]   SPACE-TIME ESTIMATES FOR NULL FORMS AND THE LOCAL EXISTENCE THEOREM [J].
KLAINERMAN, S ;
MACHEDON, M .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (09) :1221-1268