Optimal error estimates for Fourier spectral approximation of the generalized KdV equation

被引:4
作者
Deng, Zhen-guo [1 ,2 ]
Ma, He-ping [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Guangxi Univ, Sch Math & Informat Sci, Nanning 530004, Peoples R China
基金
中国国家自然科学基金;
关键词
Fourier spectral method; modified Fourier pseudospectral method; generalized Korteweg-de Vries equation; error estimate; KORTEWEG-DEVRIES EQUATION; CONVERGENCE; PROJECTION; STABILITY;
D O I
10.1007/s10483-009-0104-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Fourier spectral method for the generalized Korteweg-de Vries equation with periodic boundary conditions is analyzed, and a corresponding optimal error estimate in L-2-norm is obtained. It improves the result presented by Maday and Quarteroni. A modified Fourier pseudospectral method is also presented, with the same convergence properties as the Fourier spectral method.
引用
收藏
页码:29 / 38
页数:10
相关论文
共 11 条
[1]   FOURIER EXPANSION SOLUTION OF THE KORTEWEG-DEVRIES EQUATION [J].
ABE, K ;
INOUE, O .
JOURNAL OF COMPUTATIONAL PHYSICS, 1980, 34 (02) :202-210
[2]  
Adams R., 2003, Pure and Applied Mathematics, V140
[3]   Exponential convergence of a spectral projection of the KdV equation [J].
Bjorkavag, Magnar ;
Kalisch, Henrik .
PHYSICS LETTERS A, 2007, 365 (04) :278-283
[4]   FOURIER METHODS WITH EXTENDED STABILITY INTERVALS FOR THE KORTEWEG-DEVRIES EQUATION [J].
CHAN, TF ;
KERKHOVEN, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (03) :441-454
[5]   NUMERICAL AND THEORETICAL-STUDY OF CERTAIN NON-LINEAR WAVE PHENOMENA [J].
FORNBERG, B ;
WHITHAM, GB .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 289 (1361) :373-404
[6]   Rapid convergence of a Galerkin projection of the KdV equation [J].
Kalisch, H .
COMPTES RENDUS MATHEMATIQUE, 2005, 341 (07) :457-460
[7]   STABILITY OF THE FOURIER METHOD [J].
KREISS, HO ;
OLIGER, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (03) :421-433
[8]  
MA HP, 1986, J COMPUT PHYS, V65, P120, DOI 10.1016/0021-9991(86)90007-0
[9]   Optimal error estimates of the Legendre-Petrov-Galerkin method for the Korteweg-de Vries equation [J].
Ma, HP ;
Sun, WW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (04) :1380-1394
[10]  
MADAY Y, 1988, RAIRO MODEL MATH ANA, V22, P499