QUASILINEARIZATION FOR HYBRID CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS

被引:0
作者
Devi, J. Vasundhara [1 ]
Radhika, V.
机构
[1] GVP Coll Engn, GVP Prof V Lakshmikantham Inst Adv Studies, Visakhapatnam, Andhra Pradesh, India
来源
DYNAMIC SYSTEMS AND APPLICATIONS | 2012年 / 21卷 / 04期
关键词
Hybrid Caputo fractional differential equations; Quasilinearization; Existence;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we develop the method of Quasilinearization for hybrid Caputo fractional differential equations which are Caputo fractional differential equations with fixed moments of impulse. In order to prove this result we use the weakened assumption of C-q-continuity in place of local Holder continuity.
引用
收藏
页码:567 / 581
页数:15
相关论文
共 50 条
  • [41] HYERS-ULAM-RASSIAS STABILITY OF κ-CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS
    Yao, Hui
    Jin, Wenqi
    Dong, Qixiang
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (05): : 2903 - 2921
  • [42] A qualitative study on generalized Caputo fractional integro-differential equations
    Kassim, Mohammed D.
    Abdeljawad, Thabet
    Shatanawi, Wasfi
    Ali, Saeed M.
    Abdo, Mohammed S.
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [43] Mittag-Leffler Stability for Impulsive Caputo Fractional Differential Equations
    Agarwal, R.
    Hristova, S.
    O'Regan, D.
    [J]. DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2021, 29 (03) : 689 - 705
  • [44] BOUNDARY VALUE PROBLEM OF CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS OF VARIABLE ORDER
    Refice, A.
    Ozer, O.
    Souid, M. S.
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 (03): : 1053 - 1067
  • [45] Qualitative Analysis of Stochastic Caputo-Katugampola Fractional Differential Equations
    Khan, Zareen A.
    Liaqat, Muhammad Imran
    Akgul, Ali
    Conejero, J. Alberto
    [J]. AXIOMS, 2024, 13 (11)
  • [46] Caratheodory's approximation for a type of Caputo fractional stochastic differential equations
    Guo, Zhongkai
    Hu, Junhao
    Wang, Weifeng
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [47] ULAM STABILITY AND DATA DEPENDENCE FOR FRACTIONAL DIFFERENTIAL EQUATIONS WITH CAPUTO DERIVATIVE
    Wang, JinRong
    Lv, Linli
    Zhou, Yong
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2011, (63) : 1 - 10
  • [48] Analysis of impulsive Caputo fractional integro-differential equations with delay
    Zada, Akbar
    Riaz, Usman
    Jamshed, Junaid
    Alam, Mehboob
    Kallekh, Afef
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (02) : 2102 - 2121
  • [49] On the Averaging Principle of Caputo Type Neutral Fractional Stochastic Differential Equations
    Zou, Jing
    Luo, Danfeng
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (02)
  • [50] Euler-Maruyama scheme for Caputo stochastic fractional differential equations
    Doan, T. S.
    Huong, P. T.
    Kloeden, P. E.
    Vu, A. M.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 380