The deposition of iron and silver nanoparticles in graphene-polyelectrolyte brushes

被引:33
作者
Fang, Ming [1 ]
Chen, Zhongxin
Wang, Sizhi
Lu, Hongbin
机构
[1] Fudan Univ, State Key Lab Mol Engn Polymers, Minist Educ, Shanghai 200433, Peoples R China
基金
国家高技术研究发展计划(863计划);
关键词
POLY(ACRYLIC ACID) CORE; GOLD NANOPARTICLES; POLYMER BRUSHES; PLATINUM NANOPARTICLES; RADICAL POLYMERIZATION; METAL NANOPARTICLES; GRAPHITE OXIDE; NANOSHEETS; REDUCTION; EVOLUTION;
D O I
10.1088/0957-4484/23/8/085704
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The high surface area of graphene nanosheets (GNs) enables them to load metal nanoparticles (NPs) for various applications such as catalysis, sensors and biomedicine. To optimize the performance, it is desired to establish an effective approach that can tune the morphology of metal nanoparticles (NPs) on GNs. We here demonstrate that GN-poly(acrylic acid) (GN/PAA) brushes can control the size and spatial distributions of iron and silver NPs. Results of Raman, Fourier transform infrared and x-ray photoelectron spectroscopy confirm the covalent bonding between PAA chains and GNs. Thermogravimetric analysis reveals a PAA grafting density of similar to 0.055 chain nm(-2). Transmission electron microscopy is used to study the effect of PAA chain length and precursor concentration on the morphology of the metal NPs deposited on PAA brushes and graphene oxide (GO). Short PAA brushes are found to be effective for controlling the spatial and size distributions of the NPs, resulting in small particle sizes and homogeneous distributions compared to those deposited on GO. The concentration of precursors has a limited effect on the dimension of the NPs in the brushes due to the key role that polyelectrolyte brushes play in controlling the growth of NPs.
引用
收藏
页数:12
相关论文
共 71 条
[1]   Properties of graphene: a theoretical perspective [J].
Abergel, D. S. L. ;
Apalkov, V. ;
Berashevich, J. ;
Ziegler, K. ;
Chakraborty, Tapash .
ADVANCES IN PHYSICS, 2010, 59 (04) :261-482
[2]   In Situ Studies on the Switching Behavior of Ultrathin Poly(acrylic acid) Polyelectrolyte Brushes in Different Aqueous Environments [J].
Aulich, Dennis ;
Hoy, Olha ;
Luzinov, Igor ;
Bruecher, Martin ;
Hergenroeder, Roland ;
Bittrich, Eva ;
Eichhorn, Klaus-Jochen ;
Uhlmann, Petra ;
Stamm, Manfred ;
Esser, Norbert ;
Hinrichs, Karsten .
LANGMUIR, 2010, 26 (15) :12926-12932
[3]   Synthesis of gold nanoparticles inside polyelectrolyte brushes [J].
Azzaroni, Omar ;
Brown, Andrew A. ;
Cheng, Nan ;
Wei, Alexander ;
Jonas, Alain M. ;
Huck, Wilhelm T. S. .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (32) :3433-3439
[4]  
Bagri A, 2010, NAT CHEM, V2, P581, DOI [10.1038/nchem.686, 10.1038/NCHEM.686]
[5]   Spherical polyelectrolyte brushes [J].
Ballauff, M. .
PROGRESS IN POLYMER SCIENCE, 2007, 32 (10) :1135-1151
[6]   Interactions between metals and carbon nanotubes: at the interface between old and new materials [J].
Banhart, Florian .
NANOSCALE, 2009, 1 (02) :201-213
[7]   Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J].
Becerril, Hdctor A. ;
Mao, Jie ;
Liu, Zunfeng ;
Stoltenberg, Randall M. ;
Bao, Zhenan ;
Chen, Yongsheng .
ACS NANO, 2008, 2 (03) :463-470
[8]   Nanochemistry in Confined Environments: Polyelectrolyte Brush-Assisted Synthesis of Gold Nanoparticles inside Ordered Mesoporous Thin Films [J].
Calvo, Alejandra ;
Cecilia Fuertes, M. ;
Yameen, Basit ;
Williams, Federico J. ;
Azzaroni, Omar ;
Soler-Illia, Galo J. A. A. .
LANGMUIR, 2010, 26 (08) :5559-5567
[9]   General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy [J].
Cançado, LG ;
Takai, K ;
Enoki, T ;
Endo, M ;
Kim, YA ;
Mizusaki, H ;
Jorio, A ;
Coelho, LN ;
Magalhaes-Paniago, R ;
Pimenta, MA .
APPLIED PHYSICS LETTERS, 2006, 88 (16)
[10]   PH-responsive poly(acrylic acid) core cross-linked star polymers: Morphology transitions in solution and multilayer thin films [J].
Connal, Luke A. ;
Li, Qi ;
Quinn, John F. ;
Tjipto, Elvira ;
Caruso, Frank ;
Qiao, Greg G. .
MACROMOLECULES, 2008, 41 (07) :2620-2626