Video Segmentation Framework Based on Multi-kernel Representations and Feature Relevance Analysis for Object Classification

被引:6
作者
Molina-Giraldo, S. [1 ]
Carvajal-Gonzalez, J. [1 ]
Alvarez-Meza, A. M. [1 ]
Castellanos-Dominguez, G. [1 ]
机构
[1] Univ Nacl Colombia, Signal Proc & Recognit Grp, Manizales, Colombia
来源
PATTERN RECOGNITION APPLICATIONS AND METHODS, ICPRAM 2013 | 2015年 / 318卷
关键词
Background subtraction; Multiple kernel learning; Relevance analysis; Data separability;
D O I
10.1007/978-3-319-12610-4_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A video segmentation framework to automatically detect moving objects in a scene using static cameras is proposed. Using Multiple Kernel Representations, we aim to enhance the data separability into the scene by incorporating multiple information sources into the process, and employing a relevance analysis each source is automatically weighted. A tuned Kmeans technique is employed to group pixels as static or moving objects. Moreover, the proposed methodology is tested for the classification of people and abandoned objects. Attained results over real-world datasets, show how our approach is stable using the same parameters for all experiments.
引用
收藏
页码:273 / 283
页数:11
相关论文
共 11 条
[1]  
Carvajal-Gonzalez Johanna, 2012, Progress in Pattern Recognition, Image Analysis, ComputerVision, and Applications. Proceedings 17th Iberoamerican Congress, CIARP 2012, P837, DOI 10.1007/978-3-642-33275-3_103
[2]  
Chen TW, 2007, 2007 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-5, P787
[3]   Clustering of electrocardiograph signals in computer-aided Holter analysis [J].
Cuesta-Frau, D ;
Pérez-Cortés, JC ;
Andreu-García, G .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2003, 72 (03) :179-196
[4]  
Daza-Santacoloma G, 2009, INTELL AUTOM SOFT CO, V15, P667
[5]   Background and foreground modeling using nonparametric kernel density estimation for visual surveillance [J].
Elgammal, A ;
Duraiswami, R ;
Harwood, D ;
Davis, LS .
PROCEEDINGS OF THE IEEE, 2002, 90 (07) :1151-1163
[6]  
Gonen M., 2010, P 20 INT C PATT REC
[7]  
Gutchess D, 2001, EIGHTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOL I, PROCEEDINGS, P733, DOI 10.1109/ICCV.2001.937598
[8]  
Klare Brendan, 2009, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops), P66, DOI 10.1109/CVPR.2009.5204078
[9]   A self-organizing approach to background subtraction for visual surveillance applications [J].
Maddalena, Lucia ;
Petrosino, Alfredo .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2008, 17 (07) :1168-1177
[10]  
Rakotomamonjy A, 2008, J MACH LEARN RES, V9, P2491