On-chip photonic synapse

被引:517
作者
Cheng, Zengguang [1 ]
Rios, Carlos [1 ]
Pernice, Wolfram H. P. [2 ]
Wright, C. David [3 ]
Bhaskaran, Harish [1 ]
机构
[1] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
[2] Univ Munster, Inst Phys, Heisenbergstr 11, D-48149 Munster, Germany
[3] Univ Exeter, Dept Engn, Exeter EX4 QF, Devon, England
基金
英国工程与自然科学研究理事会;
关键词
PHASE-CHANGE MATERIALS; NEUROMORPHIC SYSTEMS; MEMORY; PLASTICITY; MEMRISTOR; NETWORKS; NEURONS; DEVICES;
D O I
10.1126/sciadv.1700160
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The search for new "neuromorphic computing" architectures that mimic the brain's approach to simultaneous processing and storage of information is intense. Because, in real brains, neuronal synapses outnumber neurons by many orders of magnitude, the realization of hardware devices mimicking the functionality of a synapse is a first and essential step in such a search. We report the development of such a hardware synapse, implemented entirely in the optical domain via a photonic integrated-circuit approach. Using purely optical means brings the benefits of ultrafast operation speed, virtually unlimited bandwidth, and no electrical interconnect power losses. Our synapse uses phase-change materials combined with integrated silicon nitride waveguides. Crucially, we can randomly set the synaptic weight simply by varying the number of optical pulses sent down the waveguide, delivering an incredibly simple yet powerful approach that heralds systems with a continuously variable synaptic plasticity resembling the true analog nature of biological synapses.
引用
收藏
页数:6
相关论文
共 34 条
[1]   Two-Terminal Carbon Nanotube Programmable Devices for Adaptive Architectures [J].
Agnus, Guillaume ;
Zhao, Weisheng ;
Derycke, Vincent ;
Filoramo, Arianna ;
Lhuillier, Yves ;
Lenfant, Stephane ;
Vuillaume, Dominique ;
Gamrat, Christian ;
Bourgoin, Jean-Philippe .
ADVANCED MATERIALS, 2010, 22 (06) :702-+
[2]   A Memristive Nanoparticle/Organic Hybrid Synapstor for Neuroinspired Computing [J].
Alibart, Fabien ;
Pleutin, Stephane ;
Bichler, Olivier ;
Gamrat, Christian ;
Serrano-Gotarredona, Teresa ;
Linares-Barranco, Bernabe ;
Vuillaume, Dominique .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (03) :609-616
[3]   Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type [J].
Bi, GQ ;
Poo, MM .
JOURNAL OF NEUROSCIENCE, 1998, 18 (24) :10464-10472
[4]   Why future supercomputing requires optics [J].
Caulfield, H. John ;
Dolev, Shlomi .
NATURE PHOTONICS, 2010, 4 (05) :261-263
[5]  
Chanthbouala A, 2012, NAT MATER, V11, P860, DOI [10.1038/NMAT3415, 10.1038/nmat3415]
[6]   A spiking neuron circuit based on a carbon nanotube transistor [J].
Chen, C-L ;
Kim, K. ;
Truong, Q. ;
Shen, A. ;
Li, Z. ;
Chen, Y. .
NANOTECHNOLOGY, 2012, 23 (27)
[7]   Spike timing-dependent plasticity: From synapse to perception [J].
Dan, Yang ;
Poo, Mu-Ming .
PHYSIOLOGICAL REVIEWS, 2006, 86 (03) :1033-1048
[8]   Convolutional networks for fast, energy-efficient neuromorphic computing [J].
Esser, Steven K. ;
Merolla, Paul A. ;
Arthur, John V. ;
Cassidy, Andrew S. ;
Appuswamy, Rathinakumar ;
Andreopoulos, Alexander ;
Berg, David J. ;
McKinstry, Jeffrey L. ;
Melano, Timothy ;
Barch, Davis R. ;
di Nolfo, Carmelo ;
Datta, Pallab ;
Amir, Arnon ;
Taba, Brian ;
Flickner, Myron D. ;
Modha, Dharmendra S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (41) :11441-11446
[9]   Building Watson: An Overview of the DeepQA Project [J].
Ferrucci, David ;
Brown, Eric ;
Chu-Carroll, Jennifer ;
Fan, James ;
Gondek, David ;
Kalyanpur, Aditya A. ;
Lally, Adam ;
Murdock, J. William ;
Nyberg, Eric ;
Prager, John ;
Schlaefer, Nico ;
Welty, Chris .
AI MAGAZINE, 2010, 31 (03) :59-79
[10]   Large-scale neuromorphic computing systems [J].
Furber, Steve .
JOURNAL OF NEURAL ENGINEERING, 2016, 13 (05)