SPECTRAL-CORRELATION CHARACTERISTICS OF THE BROWNIAN MOTION OF INERTIAL PARTICLES

被引:0
作者
Muzychuk, O. V. [1 ]
机构
[1] Nizhny Novgorod State Architectural & Civil Engn, Nizhnii Novgorod, Russia
基金
俄罗斯基础研究基金会;
关键词
Correlation Function; Brownian Motion; Correlation Time; Noise Intensity; Moment Function;
D O I
10.1007/s11141-008-9005-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An analytical-numerical approach is used for studying the correlation function and spectrum of one-dimensional Brownian motion of real ( inertial) particles in the symmetric monomodal potential pro. le. The method of analysis is based on cumulantless expansions of the moment functions. The obtained results can also be interpreted as the spectral-correlation characteristics of a nonlinear oscillator affected by intense wideband noise. The dependence of the spectral-correlation characteristics of the Brownian motion on the noise intensity, nonlinear rigidity, and viscosity of the medium is obtained.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 50 条
[41]   TRACKING OF PARTICLES IN FLUORESCENCE MICROSCOPY IMAGES USING A SPATIAL DISTANCE MODEL FOR BROWNIAN MOTION [J].
Spilger, R. ;
Hellgoth, J. ;
Lee, J-Y ;
Haenselmanrd, S. ;
Herten, D-P ;
Bartenschlager, R. ;
Rohr, K. .
2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, :969-972
[42]   A Mechanical Model of Brownian Motion for One Massive Particle Including Slow Light Particles [J].
Song Liang .
Journal of Statistical Physics, 2018, 170 :286-350
[43]   Chaotic Model of Brownian Motion in Relation to Drug Delivery Systems Using Ferromagnetic Particles [J].
Njezic, Sasa ;
Radulovic, Jasna ;
Zivic, Fatima ;
Miric, Ana ;
Pesic, Zivana Jovanovic ;
Jovanovic, Mina Vaskovic ;
Grujovic, Nenad .
MATHEMATICS, 2022, 10 (24)
[44]   Phase separation dynamics in binary systems containing mobile particles with variable Brownian motion [J].
Li Guangjin ;
Xi Wenjun ;
Liu Lanzhou ;
Liu Jianxue .
PRAMANA-JOURNAL OF PHYSICS, 2018, 91 (04)
[45]   Overdamped 2D Brownian motion for self-propelled and nonholonomic particles [J].
Martinelli, Agostino .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
[46]   A Mechanical Model of Brownian Motion for One Massive Particle Including Slow Light Particles [J].
Liang, Song .
JOURNAL OF STATISTICAL PHYSICS, 2018, 170 (02) :286-350
[47]   Net motion of an ensemble of many Brownian particles captured with a self-mixing laser [J].
Otsuka, Kenju ;
Ohtomo, Takayuki ;
Makino, Hironori ;
Sudo, Seiichi ;
Ko, Jing-Yuan .
APPLIED PHYSICS LETTERS, 2009, 94 (24)
[48]   Phase separation dynamics in binary systems containing mobile particles with variable Brownian motion [J].
Li Guangjin ;
Xi Wenjun ;
Liu Lanzhou ;
Liu Jianxue .
Pramana, 2018, 91
[49]   Integrating ultrafast and stochastic dynamics studies of Brownian motion in molecular systems and colloidal particles [J].
Oliveira, Guilherme H. ;
Nome, Rene A. .
CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2019, 44 :208-219
[50]   Operating Characteristics for Group Sequential Trials Monitored Under Fractional Brownian Motion [J].
Zhang, Qiang ;
Lai, Dejian .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2010, 39 (04) :705-712