ON GRADIENT RICCI SOLITONS WITH CONSTANT SCALAR CURVATURE

被引:23
作者
Fernandez-Lopez, Manuel [1 ]
Garcia-Rio, Eduardo [2 ]
机构
[1] Xunta Galicia, Conselleria Educ, IES Maria Sarmiento, Lugo, Spain
[2] Univ Santiago de Compostela, Fac Math, Santiago De Compostela, Galicia, Spain
关键词
Gradient Ricci soliton; scalar curvature;
D O I
10.1090/proc/12693
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use the theory of isoparametric functions to investigate gradient Ricci solitons with constant scalar curvature. We show rigidity of gradient Ricci solitons with constant scalar curvature under some conditions on the Ricci tensor, which are all satisfied if the manifold is curvature homogeneous. This leads to a complete description of four-and six-dimensional Kahler gradient Ricci solitons with constant scalar curvature.
引用
收藏
页码:369 / 378
页数:10
相关论文
共 20 条
[1]  
Boeckx Eric, 1996, RIEMANNIAN MANIFOLDS
[2]   TRANSNORMAL SYSTEMS [J].
BOLTON, J .
QUARTERLY JOURNAL OF MATHEMATICS, 1973, 24 (95) :385-395
[3]  
Cao H.-D., 2008, SURVEYS DIFFERENTIAL, V12, P47, DOI DOI 10.4310/SDG.2007.V12.N1.A3
[4]  
Cao HD, 2010, J DIFFER GEOM, V85, P175
[5]  
Cao Huai-Dong, 2010, ADV LECT MATH ALM, V11, P1
[6]   Compact locally conformally flat Riemannian manifolds [J].
Cheng, QM .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 :459-465
[7]  
Chow Bennett, 2007, MATH SURVEYS MONOGRA, V135
[8]  
Chow Bennett, 2006, GRADUATE STUDIES MAT, V77
[9]   Ricci solitons: the equation point of view [J].
Eminenti, Manolo ;
La Nave, Gabriele ;
Mantegazza, Carlo .
MANUSCRIPTA MATHEMATICA, 2008, 127 (03) :345-367
[10]   A Curvature Identity on a 4-Dimensional Riemannian Manifold [J].
Euh, Yunhee ;
Park, JeongHyeong ;
Sekigawa, Kouei .
RESULTS IN MATHEMATICS, 2013, 63 (1-2) :107-114