QUASICONFORMAL MAPS, ANALYTIC CAPACITY, AND NON LINEAR POTENTIALS

被引:0
作者
Tolsa, Xavier [1 ,2 ]
Uriarte-Tuero, Ignacio [3 ]
机构
[1] Univ Autonoma Barcelona, ICREA, Bellaterra 08193, Barcelona, Spain
[2] Univ Autonoma Barcelona, Dept Matemat, Bellaterra 08193, Barcelona, Spain
[3] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
关键词
SIGNED RIESZ KERNELS; HAUSDORFF MEASURES; CANTOR SETS; DISTORTION; BILIPSCHITZ; MAPPINGS;
D O I
10.1215/00127094-2208869
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that if phi : C -> C is a K-quasiconformal map, with K > 1, and E subset of C is a compact set contained in a ball B, then (C) over dot(2K/2K+1,) (2K+1/K+1)(E)/diam(B)2/K+1 >= c(-1) (gamma(phi(E))/diam(phi(B)))(2/K+1), where gamma stands for the analytic capacity and (C) over dot(2K/2K+1,) (2K+1/K+1) is a capacity associated to a nonlinear Riesz potential. As a consequence, if E is not K-removable (i.e., removable for bounded K-quasiregular maps), it has positive capacity (C) over dot(2K/2K+1,) (2K+1/K+1). This improves previous results that assert that E must have non-a-finite Hausdorff measure of dimension 2/K+1. We also show that the indices 2K/2K+1, 2K+1/K+1 are sharp, and that Hausdorff gauge functions do not appropriately discriminate which sets are K-removable. So essentially we solve the problem of finding sharp "metric" conditions for K-removability.
引用
收藏
页码:1503 / 1566
页数:64
相关论文
共 26 条
[1]  
Adams D. R., 1996, Grundlehren Math. Wiss., V314
[2]   AREA DISTORTION OF QUASI-CONFORMAL MAPPINGS [J].
ASTALA, K .
ACTA MATHEMATICA, 1994, 173 (01) :37-60
[3]   Distortion of Hausdorff measures and improved Painleve removability for quasiregular mappings [J].
Astala, K. ;
Clop, A. ;
Mateu, J. ;
Orobitg, J. ;
Uriarte-Tuero, I. .
DUKE MATHEMATICAL JOURNAL, 2008, 141 (03) :539-571
[4]   QUASICONFORMAL DISTORTION OF RIESZ CAPACITIES AND HAUSDORFF MEASURES IN THE PLANE [J].
Astala, K. ;
Clop, A. ;
Tolsa, X. ;
Uriarte-Tuero, I. ;
Verdera, J. .
AMERICAN JOURNAL OF MATHEMATICS, 2013, 135 (01) :17-52
[5]   Composites and quasiconformal mappings: new optimal bounds in two dimensions [J].
Astala, K ;
Nesi, V .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 18 (04) :335-355
[6]   Beltrami operators in the plane [J].
Astala, K ;
Iwaniec, T ;
Saksman, E .
DUKE MATHEMATICAL JOURNAL, 2001, 107 (01) :27-56
[7]  
Astala Kari, 2009, PRINCETON MATH SERIE, V48
[8]  
Clop A, 2008, MATH RES LETT, V15, P779
[9]  
David G, 1998, REV MAT IBEROAM, V14, P369
[10]   Vector-valued Riesz potentials: Cartan-type estimates and related capacities [J].
Eiderman, V. ;
Nazarov, F. ;
Volberg, A. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2010, 101 :727-758