Lie symmetry analysis and soliton solutions of time-fractional K(m, n) equation

被引:38
作者
Wang, G. W. [1 ]
Hashemi, M. S. [2 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Univ Bonab, Basic Sci Fac, Dept Math, POB 55517-61167, Bonab, Iran
来源
PRAMANA-JOURNAL OF PHYSICS | 2017年 / 88卷 / 01期
关键词
Lie symmetries; time-fractional K(m; n); equation; Erdelyi-Kober fractional derivative; Riemann-Liouville derivatives; soliton solutions; NONLINEAR DISPERSIVE K(M; INVARIANT ANALYSIS; DERIVATIVES;
D O I
10.1007/s12043-016-1320-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this note, method of Lie symmetries is applied to investigate symmetry properties of time-fractional K(m, n) equation with the Riemann-Liouville derivatives. Reduction of time-fractional K(m, n) equation is done by virtue of the Erdelyi-Kober fractional derivative which depends on a parameter a. Then soliton solutions are extracted by means of a transformation.
引用
收藏
页数:6
相关论文
共 19 条
[1]  
[Anonymous], 2006, THEORY APPL FRACTION
[2]  
[Anonymous], 2012, Series on Complexity, Nonlinearity and Chaos, DOI 10.1142/10044
[3]  
[Anonymous], 1999, APPL FRACTIONAL CALC
[4]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[5]   Symmetry properties of fractional diffusion equations [J].
Gazizov, R. K. ;
Kasatkin, A. A. ;
Lukashchuk, S. Yu .
PHYSICA SCRIPTA, 2009, T136
[6]   Compacton and solitary pattern solutions for nonlinear dispersive KdV-type equations involving Jumarie's fractional derivative [J].
Guo, Shimin ;
Mei, Liquan ;
Fang, Ye ;
Qiu, Zhiyu .
PHYSICS LETTERS A, 2012, 376 (03) :158-164
[7]   Group analysis and exact solutions of the time fractional Fokker-Planck equation [J].
Hashemi, M. S. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 417 :141-149
[8]   Lie symmetry analysis of the time fractional KdV-type equation [J].
Hu, Juan ;
Ye, Yujian ;
Shen, Shoufeng ;
Zhang, Jun .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 233 :439-444
[9]   Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann-Liouville derivative [J].
Huang, Qing ;
Zhdanov, Renat .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 409 :110-118
[10]   Homotopy perturbation method for the nonlinear dispersive K(m, n, 1) equations with fractional time derivatives [J].
Kocak, Hueseyin ;
Oezis, Turgut ;
Yildirim, Ahmet .
INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2010, 20 (02) :174-185