Exact amplitudes in four-dimensional non-critical string theories

被引:12
作者
Ferrari, F [1 ]
机构
[1] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA
关键词
D O I
10.1016/S0550-3213(01)00476-X
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The large N expansion of N = 2 supersymmetric Yang-Mills theory with gauge group SU(N) has recently been shown to break down at singularities on the moduli space. We conjecture that by taking N --> infinity and approaching the singularities in a correlated way, all the observables of the theory have a finite universal limit yielding amplitudes in string theories dual to field theories describing the light degrees of freedom. We explicitly calculate the amplitudes corresponding to the Seiberg-Witten period integrals for an A(n-1) series of multicritical points as well as for other critical points exhibiting a scaling reminiscent of the c = 1 matrix model. Our results extend the matrix model approach to non-critical strings in less than one dimension to non-critical strings in four dimensions. (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:348 / 364
页数:17
相关论文
共 43 条
[1]   SUMMING OVER ALL GENERA FOR D-GREATER-THAN-1 - A TOY MODEL [J].
AMBJORN, J ;
DURHUUS, B ;
JONSSON, T .
PHYSICS LETTERS B, 1990, 244 (3-4) :403-412
[2]   DISEASES OF TRIANGULATED RANDOM SURFACE MODELS, AND POSSIBLE CURES [J].
AMBJORN, J ;
DURHUUS, B ;
FROHLICH, J .
NUCLEAR PHYSICS B, 1985, 257 (03) :433-449
[3]   NEW PHENOMENA IN SU(3) SUPERSYMMETRIC GAUGE-THEORY [J].
ARGYRES, PC ;
DOUGLAS, MR .
NUCLEAR PHYSICS B, 1995, 448 (1-2) :93-126
[4]   VACUUM-STRUCTURE AND SPECTRUM OF N=2 SUPERSYMMETRIC SU(N) GAUGE-THEORY [J].
ARGYRES, PC ;
FARAGGI, AE .
PHYSICAL REVIEW LETTERS, 1995, 74 (20) :3931-3934
[5]  
ARGYRES PC, 1998, ADV THEOR MATH PHYS, V2, P293
[6]  
Bessis D., 1980, Adv. Appl. Math., V1, P109, DOI 10.1016/0196-8858(80)90008-1
[7]   SCALING VIOLATION IN A FIELD-THEORY OF CLOSED STRINGS IN ONE PHYSICAL DIMENSION [J].
BREZIN, E ;
KAZAKOV, VA ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1990, 338 (03) :673-688
[8]   PLANAR DIAGRAMS [J].
BREZIN, E ;
ITZYKSON, C ;
PARISI, G ;
ZUBER, JB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 59 (01) :35-51
[9]   EXACTLY SOLVABLE FIELD-THEORIES OF CLOSED STRINGS [J].
BREZIN, E ;
KAZAKOV, VA .
PHYSICS LETTERS B, 1990, 236 (02) :144-150
[10]  
Brezin E., 1993, The Large N Expansion in Quantum Field Theory and Critical Phenomena