On ?-subnormal subgroups and products of finite groups

被引:2
作者
Heliel, A. A. [1 ]
Ballester-Bolinches, A. [2 ]
Al-Shomrani, M. M. [1 ]
Al-Obidy, R. A. [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia
[2] Univ Valencia, Dept Matemat, Valencia, Spain
来源
ELECTRONIC RESEARCH ARCHIVE | 2022年 / 31卷 / 02期
关键词
finite group; σ -soluble group; -subnormal subgroup; products of groups;
D O I
10.3934/era.2023038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that o-= {o-i: i E I) is a partition of the set P of all primes. A subgroup A of a finite group G is said to be o --subnormal in G if A can be joined to G by a chain of subgroups A = A0 c A1 c middot middot middot c An = G such that either Ai-1 normal in Ai or Ai/CoreAi(Ai-1) is a o -j-group for some j E I, for every 1 < i < n. A o --subnormality criterion related to products of subgroups of finite o --soluble groups is proved in the paper. As a consequence, a characterisation of the o --Fitting subgroup of a finite o --soluble group naturally emerges.
引用
收藏
页码:770 / 775
页数:6
相关论文
共 10 条
[1]  
Ballester-Bolinches A, 2020, RACSAM REV R ACAD A, V114, DOI 10.1007/s13398-020-00824-4
[2]  
Ballester-Bolinches A., 2006, MATH ITS APPL, V584, DOI [10.1007/1-4020-4719-3, DOI 10.1007/1-4020-4719-3]
[3]   ?-Subnormality in locally finite groups [J].
Ferrara, Maria ;
Trombetti, Marco .
JOURNAL OF ALGEBRA, 2023, 614 :867-897
[4]   A PROOF OF THE KEGEL-WIELANDT CONJECTURE ON SUBNORMAL SUBGROUPS [J].
KLEIDMAN, PB .
ANNALS OF MATHEMATICS, 1991, 133 (02) :369-428
[5]   The size of a product of two subgroups and subnormality [J].
Levy, Dan .
ARCHIV DER MATHEMATIK, 2022, 118 (04) :361-364
[6]  
Skiba A. N., 2015, PROBL PHYS MATH TECH, V3, P70
[7]  
Skiba A. N., 2014, PFMT, V4, P89
[8]   On some arithmetic properties of finite groups [J].
Skiba, Alexander N. .
NOTE DI MATEMATICA, 2016, 36 :65-89
[9]   A generalization of a Hall theorem [J].
Skiba, Alexander N. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (05)
[10]   On σ-subnormal and σ-permutable subgroups of finite groups [J].
Skiba, Alexander N. .
JOURNAL OF ALGEBRA, 2015, 436 :1-16