Oxygen Radical Functionalization of Boron Nitride Nanosheets

被引:507
作者
Sainsbury, Toby [1 ,2 ]
Satti, Amro [1 ,3 ]
May, Peter [1 ,2 ]
Wang, Zhiming [1 ,2 ]
McGovern, Ignatius [1 ,2 ]
Gun'ko, Yurii K. [1 ,3 ]
Coleman, Jonathan [1 ,2 ]
机构
[1] Trinity Coll Dublin, CRANN, Dublin 2, Ireland
[2] Trinity Coll Dublin, Sch Phys, Dublin 2, Ireland
[3] Trinity Coll Dublin, Sch Chem, Dublin 2, Ireland
基金
欧洲研究理事会;
关键词
GRAPHENE OXIDE; CARBON NANOTUBES; EXFOLIATION; CHEMISTRY; FILMS; SPECTROSCOPY; NANORIBBONS; GRAPHITE; POLYMERS; SHEETS;
D O I
10.1021/ja3080665
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The covalent chemical functionalization of exfoliated hexagonal boron-nitride nanosheets (BNNSs) is achieved by the solution phase oxygen radical functionalization of boron atoms in the h-BN lattice. This involves a two step procedure to initially covalently graft alkoxy groups to boron atoms and the subsequent hydrolytic defunctionalization of the groups to yield hydroxyl-functionalized BNNSs (OH-BNNSs). Characterization of the functionalized-BNNSs using HR-TEM, Raman, UV-vis, FTIR, NMR, and TGA was performed to investigate. both the structure of the BNNSs and the covalent functionalization methodology. OH-BNNSs were used to prepare polymer rianocomposites and their mechanical properties analyzed. The influence of the functional groups grafted to the surface of the BNNSs is investigated by demonstrating the impact on mechanical, properties of both noncovalent and covalent bonding at the interface between the nanofiller and polymer matrixes.
引用
收藏
页码:18758 / 18771
页数:14
相关论文
共 70 条
[1]   Raman spectroscopy of single-wall boron nitride nanotubes [J].
Arenal, R. ;
Ferrari, A. C. ;
Reich, S. ;
Wirtz, L. ;
Mevellec, J. -Y. ;
Lefrant, S. ;
Rubio, A. ;
Loiseau, A. .
NANO LETTERS, 2006, 6 (08) :1812-1816
[2]   Boron-nitride and boron-carbonitride nanotubes: synthesis, characterization and theory [J].
Arenal, Raul ;
Blase, Xavier ;
Loiseau, Annick .
ADVANCES IN PHYSICS, 2010, 59 (02) :101-179
[3]   Band gap engineering by functionalization of BN sheet [J].
Bhattacharya, A. ;
Bhattacharya, S. ;
Das, G. P. .
PHYSICAL REVIEW B, 2012, 85 (03)
[4]   Graphene-based liquid crystal device [J].
Blake, Peter ;
Brimicombe, Paul D. ;
Nair, Rahul R. ;
Booth, Tim J. ;
Jiang, Da ;
Schedin, Fred ;
Ponomarenko, Leonid A. ;
Morozov, Sergey V. ;
Gleeson, Helen F. ;
Hill, Ernie W. ;
Geim, Andre K. ;
Novoselov, Kostya S. .
NANO LETTERS, 2008, 8 (06) :1704-1708
[5]  
Brandrup J., 1999, Polymer Handbook, VII
[6]   Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries [J].
Chang, Kun ;
Chen, Weixiang ;
Ma, Lin ;
Li, Hui ;
Li, He ;
Huang, Feihe ;
Xu, Zhude ;
Zhang, Qingbo ;
Lee, Jim-Yang .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (17) :6251-6257
[7]   Mechanical reinforcement of polymers using carbon nanotubes [J].
Coleman, JN ;
Khan, U ;
Gun'ko, YK .
ADVANCED MATERIALS, 2006, 18 (06) :689-706
[8]   Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials [J].
Coleman, Jonathan N. ;
Lotya, Mustafa ;
O'Neill, Arlene ;
Bergin, Shane D. ;
King, Paul J. ;
Khan, Umar ;
Young, Karen ;
Gaucher, Alexandre ;
De, Sukanta ;
Smith, Ronan J. ;
Shvets, Igor V. ;
Arora, Sunil K. ;
Stanton, George ;
Kim, Hye-Young ;
Lee, Kangho ;
Kim, Gyu Tae ;
Duesberg, Georg S. ;
Hallam, Toby ;
Boland, John J. ;
Wang, Jing Jing ;
Donegan, John F. ;
Grunlan, Jaime C. ;
Moriarty, Gregory ;
Shmeliov, Aleksey ;
Nicholls, Rebecca J. ;
Perkins, James M. ;
Grieveson, Eleanor M. ;
Theuwissen, Koenraad ;
McComb, David W. ;
Nellist, Peter D. ;
Nicolosi, Valeria .
SCIENCE, 2011, 331 (6017) :568-571
[9]   Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials [J].
Compton, Owen C. ;
Nguyen, SonBinh T. .
SMALL, 2010, 6 (06) :711-723
[10]  
Cragg R. H., 1964, ADV CHEM SER, V42, P220