A new class of generalized Hermite-Bernoulli polynomials

被引:26
作者
Pathan, Mahmood A. [1 ]
机构
[1] Ctr Math Sci, Pala 686574, Kerala, India
关键词
Hermite polynomials; Bernoulli polynomials; Hermite-Bernoulli polynomials; summation formulae; symmetric identities;
D O I
10.1515/gmj-2012-0019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a new class of generalized Hermite-Bernoulli polynomials and derive some implicit summation formulae and symmetric identities by using different analytical means and applying generating functions. These results extend some known summations and identities of generalized Bernoulli polynomials studied by Pierpaolo Natalini and Angela Bernardini, Bernoulli numbers, Bernoulli polynomials and Hermite polynomials.
引用
收藏
页码:559 / 573
页数:15
相关论文
共 10 条
[1]  
AGARWAL RP, 1953, CR HEBD ACAD SCI, V236, P2031
[2]  
Andrews LC., 1985, Special Functions for Engineers and Applied Mathematicians
[3]  
APOSTOL TM, 1951, B AM MATH SOC, V57, P370
[4]   Exponential polynomials [J].
Bell, ET .
ANNALS OF MATHEMATICS, 1934, 35 :258-277
[5]  
Dattoli G., 1999, REND MATH, V19, P385
[6]   Implicit summation formulae for Hermite and related polynomials [J].
Khan, Subuhi ;
Pathan, M. A. ;
Hassan, Nader Ali Makboul ;
Yasmin, Ghazala .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (01) :408-416
[7]  
Natalini P., 2003, Journal of Applied Mathematics, P155
[8]  
Podlubny O., 1999, MATH SCI ENG, V198
[9]  
Srivastava H.M., 1984, ELLIS HORWOOD SERIES
[10]   Several identities for the generalized Apostol-Bernoulli polynomials [J].
Zhang, Zhizheng ;
Yang, Hanqing .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (12) :2993-2999