Models for Gapped Boundaries and Domain Walls

被引:342
作者
Kitaev, Alexei [1 ]
Kong, Liang [2 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China
基金
美国国家科学基金会;
关键词
CATEGORIES; ALGEBRAS; INVARIANTS; STATISTICS; DEFECTS; DUALITY;
D O I
10.1007/s00220-012-1500-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define a class of lattice models for two-dimensional topological phases with boundary such that both the bulk and the boundary excitations are gapped. The bulk part is constructed using a unitary tensor category as in the Levin-Wen model, whereas the boundary is associated with a module category over . We also consider domain walls (or defect lines) between different bulk phases. A domain wall is transparent to bulk excitations if the corresponding unitary tensor categories are Morita equivalent. Defects of higher codimension will also be studied. In summary, we give a dictionary between physical ingredients of lattice models and tensor-categorical notions.
引用
收藏
页码:351 / 373
页数:23
相关论文
共 35 条
[1]  
Balsam B, 2010, TURAEV VIRO INVARIAN
[2]   Invariants of piecewise-linear 3-manifolds [J].
Barrett, JW ;
Westbury, BW .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (10) :3997-4022
[3]   The Quantum Double Model with Boundary: Condensations and Symmetries [J].
Beigi, Salman ;
Shor, Peter W. ;
Whalen, Daniel .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 306 (03) :663-694
[4]   A coassociative C*-quantum group with nonintegral dimensions [J].
Bohm, G ;
Szlachonyi, K .
LETTERS IN MATHEMATICAL PHYSICS, 1996, 38 (04) :437-456
[5]   Topological Order with a Twist: Ising Anyons from an Abelian Model [J].
Bombin, H. .
PHYSICAL REVIEW LETTERS, 2010, 105 (03)
[6]  
Bravyi S. B, 1998, QUANT PH9811052, DOI 10.48550/arXiv.quant-ph/9811052
[7]  
Buerschaper O., 2010, HIERARCHY TOPOLOGICA
[8]  
Davydov A, 2011, ADV THEOR MATH PHYS, V15, P43
[9]  
Deligne P., 1990, Birkhauser, V87, P111, DOI [10.1007/978-0-8176-4575-53, 10, DOI 10.1007/978-0-8176-4575-53]
[10]   On fusion categories [J].
Etingof, P ;
Nikshych, D ;
Ostrik, V .
ANNALS OF MATHEMATICS, 2005, 162 (02) :581-642