Asymptotic Cramer-Rao Bound for Noise-Compensated Autoregressive Analysis

被引:3
|
作者
Weruaga, Luis [1 ]
Melko, O. Michael [1 ]
机构
[1] Khalifa Univ Sci Technol & Res, Sharjah, U Arab Emirates
关键词
Additive Gaussian color noise; autoregressive analysis; Cramer-Rao bound; noise compensation; ADDITIVE NOISE; ENHANCEMENT; ESTIMATOR; SIGNALS; SPEECH; ERROR;
D O I
10.1109/TCSI.2012.2185277
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Noise-compensated autoregressive (AR) analysis is a problem insufficiently explored with regard to the accuracy of the estimate. This paper studies comprehensively the lower limit of the estimation variance, presenting the asymptotic Cramer-Rao bound (CRB) for Gaussian processes and additive Gaussian noise. This novel result is obtained by using a frequency-domain perspective of the problem as well as an unusual parametrization of an AR model. The Wiener filter rule appears as the distinctive building element in the Fisher information matrix. The theoretical analysis is validated numerically, showing that the proposed CRB is attained by competitive ad hoc estimation methods under a variety of Gaussian color noise and realistic scenarios.
引用
收藏
页码:2017 / 2024
页数:8
相关论文
共 50 条
  • [21] CONCENTRATED CRAMER-RAO BOUND EXPRESSIONS
    HOCHWALD, B
    NEHORAI, A
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) : 363 - 371
  • [22] CRAMER-RAO BOUND FOR RANGE ESTIMATION
    Wang, Yiyin
    Leus, Geert
    van der Veen, Alle-Jan
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 3301 - 3304
  • [23] Bayesian Periodic Cramer-Rao Bound
    Routtenberg, Tirza
    Tabrikian, Joseph
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1878 - 1882
  • [24] ATTAINMENT OF CRAMER-RAO LOWER BOUND
    JOSHI, VM
    ANNALS OF STATISTICS, 1976, 4 (05): : 998 - 1002
  • [25] LIKELIHOOD SENSITIVITY AND THE CRAMER-RAO BOUND
    GARDNER, WA
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1979, 25 (04) : 491 - 491
  • [26] ATTAINMENT OF CRAMER-RAO LOWER BOUND
    WIJSMAN, RA
    ANNALS OF STATISTICS, 1973, 1 (03): : 538 - 542
  • [27] A TIGHTER BAYESIAN CRAMER-RAO BOUND
    Bacharach, Lucien
    Fritsche, Carsten
    Orguner, Umut
    Chaumette, Eric
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 5277 - 5281
  • [28] The Constrained Misspecified Cramer-Rao Bound
    Fortunati, Stefano
    Gini, Fulvio
    Greco, Maria S.
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (05) : 718 - 721
  • [29] Coarrays, MUSIC, and the Cramer-Rao Bound
    Wang, Mianzhi
    Nehorai, Arye
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (04) : 933 - 946
  • [30] A variational interpretation of the Cramer-Rao bound
    Fauss, Michael
    Dytso, Alex
    Poor, H. Vincent
    SIGNAL PROCESSING, 2021, 182