Construction of differential material matrices for the orthogonal finite-integration technique with nonlinear materials

被引:17
作者
De Gersem, Herbert [1 ,2 ]
Munteanu, Irina [3 ]
Weiland, Thomas [1 ]
机构
[1] Tech Univ Darmstadt, Inst Theorie Elektromagnet Felder, D-64289 Darmstadt, Germany
[2] Katholieke Univ Leuven, B-8500 Kortrijk, Belgium
[3] Comp Simulat Technol, D-64289 Darmstadt, Germany
关键词
finite-element methods (FEMs); finite-integration technique (FIT); Newton method; nonlinearities;
D O I
10.1109/TMAG.2007.915819
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The linearization of an electromagnetic formulation by the Newton method can be expressed similarly as for the linear case, by introducing differential material matrices. For the case of the finite-integration technique applied to an orthogonal grid, the chord material matrix is diagonal whereas the differential material matrices includes off-diagonal bands, representing the cross-directional coupling introduced by the nonlinearity. An approximative Newton method based on a unidirectional differential material matrix yields a diagonal matrix, which has a higher computational efficiency but may lead to a degenerated convergence.
引用
收藏
页码:710 / 713
页数:4
相关论文
共 12 条
[1]  
Bossavit A., 1998, COMPUTATIONAL ELECTR
[2]   Differential material matrices for the finite integration technique [J].
De Gersem, H. ;
Munteanu, I. ;
Weiland, T. .
EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2007, 39 (02) :165-169
[3]   Numerical calculation of nonlinear transient field problems with the Newton-Raphson method [J].
Drobny, S ;
Weiland, T .
IEEE TRANSACTIONS ON MAGNETICS, 2000, 36 (04) :809-812
[4]  
Gyselinck J., 2000, THESIS U GENT GHENT
[5]  
MAYERGOYZ I, 1998, NONLINEAR DIFFUSION
[6]  
Nocedal J., 1999, NUMERICAL OPTIMIZATI, DOI [10.1007/b98874, DOI 10.1007/B98874]
[7]  
SERRA E, 2003, P IGTE S GRAZ, P120
[8]   FINITE ELEMENT SOLUTION OF SATURABLE MAGNETIC FIELD PROBLEMS [J].
SILVESTER, P ;
CHARI, MVK .
IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1970, PA89 (07) :1642-+
[9]   Finite formulation of electromagnetic field [J].
Tonti, E .
IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (02) :333-336
[10]   Learning to predict through adaptation [J].
Treves, A .
NEUROINFORMATICS, 2004, 2 (03) :361-365