Approximation by Chlodowsky type Jakimovski-Leviatan operators

被引:27
作者
Buyukyazici, Ibrahim [1 ]
Tanberkan, Hande [2 ]
Serenbay, Sevilay Kirci [2 ]
Atakut, Cigdem [1 ]
机构
[1] Ankara Univ, Fac Sci, Dept Math, TR-06100 Ankara, Turkey
[2] Baskent Univ, Dept Math Educ, TR-06530 Ankara, Turkey
关键词
Jakimovski-Leviatan operators; Modulus of continuity; Weighted spaces; Rate of convergence; Divided differences;
D O I
10.1016/j.cam.2013.04.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a generalization of the Jakimovski-Leviatan operators constructed by A.Jakimovski and D. Leviatan (1969) in [1] and the theorems on convergence and the degree of convergence are established. We also give a Voronovskaya-type theorem. Furthermore, we study the convergence of these operators in a weighted space of functions on a positive semi-axis and estimate the approximation by using a new type of weighted modulus of continuity introduced by A.D. Gadjiev and A. Aral (2007) in [9]. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:153 / 163
页数:11
相关论文
共 10 条
[1]  
Abel U., 1999, FUNCTIONS SERIES OPE, P103
[2]  
Altomare F., 1994, Korovkin-Type Approximation Theory and Its Applications, V17, P266
[3]  
[Anonymous], 1974, Sov. Math. Dokl
[4]  
Chlodovsky I., 1937, Compositio Math, V4, P380
[5]  
Ciupa A., 2007, Creative Math. &Inf., V16, P13
[6]  
Ciupa A., 2008, AUTOMAT COMPUT APPL, V17, P401
[7]   The estimates of approximation by using a new type of weighted modulus of continuity [J].
Gadjiev, A. D. ;
Aral, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (01) :127-135
[8]  
Gadziev, 1978, MATH NOTES, V56, P995
[9]  
Jakimovski A., 1969, Mathematica (Cluj), V11, P97