A Robust Particle Filtering Algorithm With Non-Gaussian Measurement Noise Using Student-t Distribution

被引:71
作者
Xu, Dingjie [1 ]
Shen, Chen [1 ]
Shen, Feng [1 ]
机构
[1] Harbin Engn Univ, Coll Automat, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Marginalization; particle filter; state estimation; student-t distribution; variational bayes; STATE-SPACE MODELS; GRAPHICAL MODELS; PARAMETERS;
D O I
10.1109/LSP.2013.2289975
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Gaussian noise assumption may result in a major decline in state estimation accuracy when the measurements are with the presence of outliers. In this letter, we endow the unknown measurement noise with the Student-t distribution to model the underlying non-Gaussian dynamics of a real physical system. Thereafter a robust particle filtering algorithm is developed. First, we employ variational Bayesian (VB) approach to robustly infer the unknown noise parameters recursively. Second, in order to decrease the computational complexity resulted by the unknown noise parameters, those parameters are marginalized out to allow each particle to be updated by using sufficient statistics estimated by VB approach. The proposed algorithm is tested with a typical non-linear model and the robustness of our algorithm has been borne out.
引用
收藏
页码:30 / 34
页数:5
相关论文
共 16 条
  • [1] Attias H, 2000, ADV NEUR IN, V12, P209
  • [2] Bar-Shalom Y., 2004, Estimation with applications to tracking and navigation: Theory algorithms and software
  • [3] Beal M. J., 2003, THESIS U CAMBRIDGE L
  • [4] Robust Autoregression: Student-t Innovations Using Variational Bayes
    Christmas, Jacqueline
    Everson, Richard
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (01) : 48 - 57
  • [5] AN INTERACTING MULTIPLE MODEL APPROACH FOR TARGET TRACKING WITH GLINT NOISE
    DAEIPOUR, E
    BARSHALOM, Y
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1995, 31 (02) : 706 - 715
  • [6] An introduction to variational methods for graphical models
    Jordan, MI
    Ghahramani, Z
    Jaakkola, TS
    Saul, LK
    [J]. MACHINE LEARNING, 1999, 37 (02) : 183 - 233
  • [7] ROBUST STATISTICAL MODELING USING THE T-DISTRIBUTION
    LANGE, KL
    LITTLE, RJA
    TAYLOR, JMG
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (408) : 881 - 896
  • [8] Marginalized adaptive particle filtering for nonlinear models with unknown time-varying noise parameters
    Ozkan, Emre
    Smidl, Vaclav
    Saha, Saikat
    Lundquist, Christian
    Gustafsson, Fredrik
    [J]. AUTOMATICA, 2013, 49 (06) : 1566 - 1575
  • [9] Piche Robert., 2012, 2012 IEEE International Workshop on Machine Learning for Signal Processing, P1
  • [10] Saha S., 2010, IEEE AER C, P1