Decomposition of Feynman integrals on the maximal cut by intersection numbers

被引:101
作者
Frellesvig, Hjalte [1 ,2 ]
Gasparotto, Federico [1 ,2 ]
Laporta, Stefano [1 ,2 ]
Mandal, Manoj K. [1 ,2 ]
Mastrolia, Pierpaolo [1 ,2 ]
Mattiazzi, Luca [1 ,2 ]
Mizera, Sebastian [3 ,4 ]
机构
[1] Univ Padua, Dipartimento Fis & Astron, Via Marzolo 8, I-35131 Padua, Italy
[2] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy
[3] Perimeter Inst Theoret Phys, 31 Caroline St N, Waterloo, ON N2L 2Y5, Canada
[4] Univ Waterloo, Dept Phys & Astron, 200 Univ Ave W, Waterloo, ON N2L 3G1, Canada
基金
欧盟地平线“2020”;
关键词
Scattering Amplitudes; Differential and Algebraic Geometry; DIMENSIONAL RECURRENCE RELATION; PRECISION EPSILON-EXPANSIONS; TWISTED PERIOD RELATIONS; LAURICELLAS F-D; DIFFERENTIAL-EQUATIONS; ELECTRON G-2; MASTER INTEGRALS; PARTS; MONODROMY;
D O I
10.1007/JHEP05(2019)153
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We elaborate on the recent idea of a direct decomposition of Feynman integrals onto a basis of master integrals on maximal cuts using intersection numbers. We begin by showing an application of the method to the derivation of contiguity relations for special functions, such as the Euler beta function, the Gauss F-2(1) hypergeometric function, and the Appell F-1 function. Then, we apply the new method to decompose Feynman integrals whose maximal cuts admit 1-form integral representations, including examples that have from two to an arbitrary number of loops, and/or from zero to an arbitrary number of legs. Direct constructions of differential equations and dimensional recurrence relations for Feynman integrals are also discussed. We present two novel approaches to decomposition-by-intersections in cases where the maximal cuts admit a 2-form integral representation, with a view towards the extension of the formalism to n-form representations. The decomposition formulae computed through the use of intersection numbers are directly verified to agree with the ones obtained using integration-by-parts identities.
引用
收藏
页数:112
相关论文
共 130 条
[1]   Analytic Form of Planar Two-Loop Five-Gluon Scattering Amplitudes in QCD [J].
Abreu, S. ;
Dormans, J. ;
Cordero, F. Febres ;
Ita, H. ;
Page, B. .
PHYSICAL REVIEW LETTERS, 2019, 122 (08)
[2]   Planar two-loop five-parton amplitudes from numerical unitarity [J].
Abreu, S. ;
Cordero, F. Febres ;
Ita, H. ;
Page, B. ;
Sotnikov, V. .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (11)
[3]  
Abreu S., 2018, ARXIV180800069
[4]   Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory [J].
Abreu, Samuel ;
Dixon, Lance J. ;
Herrmann, Enrico ;
Page, Ben ;
Zeng, Mao .
PHYSICAL REVIEW LETTERS, 2019, 122 (12)
[5]  
Abreu S, 2019, J HIGH ENERGY PHYS, DOI 10.1007/JHEP03(2019)123
[6]   Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case [J].
Abreu, Samuel ;
Britto, Ruth ;
Duhr, Claude ;
Gardi, Einan .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (12)
[7]   Algebraic Structure of Cut Feynman Integrals and the Diagrammatic Coaction [J].
Abreu, Samuel ;
Britto, Ruth ;
Duhr, Claude ;
Gardi, Einan .
PHYSICAL REVIEW LETTERS, 2017, 119 (05)
[8]   Analytic results for the planar double box integral relevant to top-pair production with a closed top loop [J].
Adams, Luise ;
Chaubey, Ekta ;
Weinzierl, Stefan .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (10)
[9]   The ε-form of the differential equations for Feynman integrals in the elliptic case [J].
Adams, Luise ;
Weinzierl, Stefan .
PHYSICS LETTERS B, 2018, 781 :270-278
[10]   Analytic results for virtual QCD corrections to Higgs production and decay [J].
Aglietti, Ugo ;
Bonciani, Roberto ;
Degrassi, Giuseppe ;
Vicini, Alessandro .
JOURNAL OF HIGH ENERGY PHYSICS, 2007, (01)