Production of defects in supported carbon nanotubes under ion irradiation

被引:204
作者
Krasheninnikov, AV [1 ]
Nordlund, K [1 ]
Keinonen, J [1 ]
机构
[1] Univ Helsinki, Accelerator Lab, FIN-00014 Helsinki, Finland
关键词
D O I
10.1103/PhysRevB.65.165423
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ion irradiation of individual carbon nanotubes deposited on substrates may be used for making metallic nanowires and studying effects of disorder on the electronic transport in low-dimensional systems. In order to understand the basic physical mechanisms of radiation damage production in supported nanotubes, we employ molecular dynamics and simulate ion impacts on nanotubes lying on different substrates, such as platinum and graphite. We show that defect production depends on the type of the substrate and that the damage is higher for metallic heavy-atom substrates than for light-atom substrates, since in the former case sputtered metal atoms and backscattered recoils produce extra damage in the nanotube. We further study the behavior of defects upon high-temperature annealing and demonstrate that although ions may severely damage nanotubes in a local region, the nanotube carbon network can heal such a strong localized damage due to defect migration and dangling-bond saturation. We also show that after annealing the residual damage in nanotubes is independent of the substrate type. We predict the pinning of nanotubes to substrates through nanotube-substrate bonds that appear near irradiation-induced defects.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 40 条
[1]   Surface reconstructions and dimensional changes in single-walled carbon nanotubes [J].
Ajayan, PM ;
Ravikumar, V ;
Charlier, JC .
PHYSICAL REVIEW LETTERS, 1998, 81 (07) :1437-1440
[2]  
ALBE K, 2002, IN PRESS PHYS REV B
[3]  
Allen M.P., 1989, COMPUTER SIMULATION
[4]   Conductance of carbon nanotubes with disorder: A numerical study [J].
Anantram, MP ;
Govindan, TR .
PHYSICAL REVIEW B, 1998, 58 (08) :4882-4887
[5]   Contacting carbon nanotubes selectively with low-ohmic contacts for four-probe electric measurements [J].
Bachtold, A ;
Henny, M ;
Terrier, C ;
Strunk, C ;
Schonenberger, C ;
Salvetat, JP ;
Bonard, JM ;
Forro, L .
APPLIED PHYSICS LETTERS, 1998, 73 (02) :274-276
[6]   Irradiation effects in carbon nanostructures [J].
Banhart, F .
REPORTS ON PROGRESS IN PHYSICS, 1999, 62 (08) :1181-1221
[7]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[8]  
BERISH R, 1981, SPUTTERING PARTICLE
[9]   EMPIRICAL POTENTIAL FOR HYDROCARBONS FOR USE IN SIMULATING THE CHEMICAL VAPOR-DEPOSITION OF DIAMOND FILMS [J].
BRENNER, DW .
PHYSICAL REVIEW B, 1990, 42 (15) :9458-9471
[10]   Defects, quasibound states, and quantum conductance in metallic carbon nanotubes [J].
Choi, HJ ;
Ihm, J ;
Louie, SG ;
Cohen, ML .
PHYSICAL REVIEW LETTERS, 2000, 84 (13) :2917-2920