A COMPACTNESS THEOREM FOR THE YAMABE PROBLEM

被引:0
作者
Khuri, M. A. [1 ]
Marques, F. C. [2 ]
Schoen, R. M. [3 ]
机构
[1] SUNY Stony Brook, Stony Brook, NY 11794 USA
[2] IMPA, BR-22460320 Rio De Janeiro, Brazil
[3] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
SCALAR CURVATURE; EQUATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove compactness for the full set of solutions to the Yamabe Problem if n <= 24. After proving sharp pointwise estimates at a blowup point, we prove the Weyl Vanishing Theorem in those dimensions, and reduce the compactness question to showing positivity of a quadratic form. We also show that this quadratic form has negative eigenvalues if n >= 25.
引用
收藏
页码:143 / 196
页数:54
相关论文
共 50 条
[31]   Compactness and blow up results for doubly perturbed Yamabe problems on manifolds with non umbilic boundary [J].
Ghimenti, Marco G. ;
Micheletti, Anna Maria .
ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (04) :1209-1235
[32]   BIFURCATION OF PERIODIC SOLUTIONS TO THE SINGULAR YAMABE PROBLEM ON SPHERES [J].
Bettiol, Renato G. ;
Piccione, Paolo ;
Santoro, Bianca .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2016, 103 (02) :191-205
[33]   Equivariant Yamabe problem and Hebey-Vaugon conjecture [J].
Madani, Farid .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (01) :241-254
[34]   Concentration on minimal submanifolds for a Yamabe-type problem [J].
Deng, Shengbing ;
Musso, Monica ;
Pistoia, Angela .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2016, 41 (09) :1379-1425
[35]   The Yamabe Problem and Applications on Noncompact Complete Riemannian Manifolds [J].
Seongtag Kim .
Geometriae Dedicata, 1997, 64 :373-381
[36]   The Yamabe problem and applications on noncompact complete Riemannian manifolds [J].
Kim, ST .
GEOMETRIAE DEDICATA, 1997, 64 (03) :373-381
[37]   Nodal solutions for the fractional Yamabe problem on Heisenberg groups [J].
Kristaly, Alexandru .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (02) :771-788
[38]   A combinatorial Yamabe problem on two and three dimensional manifolds [J].
Ge, Huabin ;
Xu, Xu .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (01)
[39]   The Asymptotically Flat Scalar-Flat Yamabe Problem with Boundary [J].
Stephen McCormick .
The Journal of Geometric Analysis, 2017, 27 :2269-2277
[40]   Aubin’s Lemma for the Yamabe constants of infinite coverings and a positive mass theorem [J].
Kazuo Akutagawa .
Mathematische Annalen, 2012, 352 :829-864