A COMPACTNESS THEOREM FOR THE YAMABE PROBLEM

被引:0
作者
Khuri, M. A. [1 ]
Marques, F. C. [2 ]
Schoen, R. M. [3 ]
机构
[1] SUNY Stony Brook, Stony Brook, NY 11794 USA
[2] IMPA, BR-22460320 Rio De Janeiro, Brazil
[3] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
SCALAR CURVATURE; EQUATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove compactness for the full set of solutions to the Yamabe Problem if n <= 24. After proving sharp pointwise estimates at a blowup point, we prove the Weyl Vanishing Theorem in those dimensions, and reduce the compactness question to showing positivity of a quadratic form. We also show that this quadratic form has negative eigenvalues if n >= 25.
引用
收藏
页码:143 / 196
页数:54
相关论文
共 50 条
[21]   EXISTENCE THEOREMS OF THE FRACTIONAL YAMABE PROBLEM [J].
Kim, Seunghyeok ;
Musso, Monica ;
Wei, Juncheng .
ANALYSIS & PDE, 2018, 11 (01) :75-113
[22]   On a Yamabe Type Problem in Finsler Geometry [J].
Chen, Bin ;
Zhao, Lili .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2017, 60 (02) :253-268
[23]   Kodaira dimension & the Yamabe problem, II [J].
Albanese, Michael ;
LeBrun, Claude .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2023, 31 (10)
[24]   On a perturbed Yamabe problem with mixed boundary conditions [J].
Alghanemi, Azeb ;
Ben Mahmoud, Randa ;
Chtioui, Hichem .
JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2025, 11 (01) :397-431
[25]   The qc Yamabe problem on non-spherical quaternionic contact manifolds [J].
Ivanov, Stefan ;
Petkov, Alexander .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 118 :44-81
[26]   A singular Yamabe problem on manifolds with solid cones [J].
Apaza, Juan Alcon ;
Almaraz, Sergio .
ADVANCES IN CALCULUS OF VARIATIONS, 2024, 17 (04) :1131-1160
[27]   Compactness and blow up results for doubly perturbed Yamabe problems on manifolds with umbilic boundary [J].
Ghimenti, Marco G. ;
Micheletti, Anna Maria .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 229
[28]   Blow-up examples for the Yamabe problem [J].
Marques, Fernando C. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 36 (03) :377-397
[29]   Existence results for the Yamabe problem on manifolds with boundary [J].
Marques, FC .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (06) :1599-1620
[30]   The Bahri-Coron Theorem for Fractional Yamabe-Type Problems [J].
Abdelhedi, Wael ;
Chtioui, Hichem ;
Hajaiej, Hichem .
ADVANCED NONLINEAR STUDIES, 2018, 18 (02) :393-407