A COMPACTNESS THEOREM FOR THE YAMABE PROBLEM

被引:0
作者
Khuri, M. A. [1 ]
Marques, F. C. [2 ]
Schoen, R. M. [3 ]
机构
[1] SUNY Stony Brook, Stony Brook, NY 11794 USA
[2] IMPA, BR-22460320 Rio De Janeiro, Brazil
[3] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
SCALAR CURVATURE; EQUATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove compactness for the full set of solutions to the Yamabe Problem if n <= 24. After proving sharp pointwise estimates at a blowup point, we prove the Weyl Vanishing Theorem in those dimensions, and reduce the compactness question to showing positivity of a quadratic form. We also show that this quadratic form has negative eigenvalues if n >= 25.
引用
收藏
页码:143 / 196
页数:54
相关论文
共 50 条
  • [11] About the Lorentzian Yamabe problem
    Ginoux, Nicolas
    GEOMETRIAE DEDICATA, 2015, 174 (01) : 287 - 309
  • [12] INFINITELY MANY SOLUTIONS TO THE YAMABE PROBLEM ON NONCOMPACT MANIFOLDS
    Bettiol, Renato G.
    Piccione, Paolo
    ANNALES DE L INSTITUT FOURIER, 2018, 68 (02) : 589 - 609
  • [13] The Yamabe Problem for Distributional Curvature
    Zhang, Huaiyu
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (10)
  • [14] On perturbations of the fractional Yamabe problem
    Choi, Woocheol
    Kim, Seunghyeok
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (01)
  • [15] The k-Yamabe problem
    Sheng, Weimin
    Trudinger, Neil S.
    Wang, Xu-Jia
    IN MEMORY OF C.C. HSIUNG: LECTURES GIVEN AT THE JDG SYMPOSIUM, LEHIGH UNIVERSITY, JUNE 2010, 2012, 17 : 427 - 457
  • [16] The Yamabe problem on stratified spaces
    Akutagawa, Kazuo
    Carron, Gilles
    Mazzeo, Rafe
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (04) : 1039 - 1079
  • [17] A YAMABE-TYPE PROBLEM ON SMOOTH METRIC MEASURE SPACES
    Case, Jeffrey S.
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2015, 101 (03) : 467 - 505
  • [18] On a Yamabe Type Problem in Finsler Geometry
    Chen, Bin
    Zhao, Lili
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2017, 60 (02): : 253 - 268
  • [19] EXISTENCE THEOREMS OF THE FRACTIONAL YAMABE PROBLEM
    Kim, Seunghyeok
    Musso, Monica
    Wei, Juncheng
    ANALYSIS & PDE, 2018, 11 (01): : 75 - 113
  • [20] On the negative case of the Singular Yamabe Problem
    David L. Finn
    The Journal of Geometric Analysis, 1999, 9 (1)