Singular integrals with variable kernel and fractional differentiation in homogeneous Morrey-Herz-type Hardy spaces with variable exponents

被引:3
作者
Yang, Yanqi [1 ]
Tao, Shuangping [1 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Gansu, Peoples R China
来源
OPEN MATHEMATICS | 2018年 / 16卷
基金
中国国家自然科学基金;
关键词
Variable kernel; Fractional differentiation; Sobolev spaces I-gamma(BMO); Morrey-Herz-type Hardy space with variable exponents; OPERATORS; COMMUTATORS; REGULARITY; EQUATIONS;
D O I
10.1515/math-2018-0036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be the singular integral operator with variable kernel defined by Tf(X) = p.v.integral(Rn)Omega(x,x-y)/|x-y|(n)f(y)dy and D-gamma(0 <= gamma <= 1) be the fractional differentiation operator. Let T-* and T-# be the adjoint of T and the pseudo-adjoint of T, respectively. The aim of this paper is to establish some boundedness for TD gamma - (DT)-T-gamma and (T* - T-#)D-gamma on the homogeneous Morrey-Herz-type Hardy spaces with variable exponents HM\l=K:\alpha(.),q (p(.),lambda)via the convolution operator T-m,T-j and Calderon-Zygmund operator, and then establish their boundedness on these spaces. The boundedness on HM\l=K:\alpha(.),q (p(.),lambda)(R-n) is shown to hold for TD gamma -(DT)-T-gamma and (T* - T-#)D-gamma. Moreover, the authors also establish various norm characterizations for the product T1T2 and the pseudo-product T-1 \sh=cir\ T-2.
引用
收藏
页码:326 / 345
页数:20
相关论文
共 35 条
[1]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[2]   Gradient estimates for a class of parabolic systems [J].
Acerbi, Emilio ;
Mingione, Giuseppe .
DUKE MATHEMATICAL JOURNAL, 2007, 136 (02) :285-320
[3]  
[Anonymous], SINGULAR INTEG UNPUB
[4]  
[Anonymous], 2008, Herz Type Spaces and Their Applications
[5]  
[Anonymous], 1978, Appl Anal, DOI 10.1080/00036817808839193
[6]  
[Anonymous], GRAD STUD MATH
[7]  
[Anonymous], J FUNCTION SPACES
[8]  
[Anonymous], 2000, LECT NOTES MATH
[9]  
Calderon A.P., 1955, T AM MATHSOC, V78, P209
[10]   ON SINGULAR INTEGRALS [J].
CALDERON, AP ;
ZYGMUND, A .
AMERICAN JOURNAL OF MATHEMATICS, 1956, 78 (02) :289-309