On the minimum number of distinct eigenvalues for a symmetric matrix whose graph is a given tree

被引:49
作者
Leal-Duarte, A
Johnson, CR
机构
[1] Univ Coimbra, Dept Matemat, P-3000 Coimbra, Portugal
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2002年 / 5卷 / 02期
关键词
graph; tree; matrices; eigenvalues;
D O I
10.7153/mia-05-19
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that for any tree T the minimum number of distinct eigenvalues of an Hermitian matrix whose graph is T (diagonal entries free) is at least the number of vertices in a longest path of T. This is another step toward the general problem of characterizing the possible multiplicities for a given graph. Related observations are made and the result facilitates a table of multiplicities for trees on fewer than 8 vertices.
引用
收藏
页码:175 / 180
页数:6
相关论文
共 7 条