Normalized Mutual Information Feature Selection for Electroencephalogram Data based on Grassberger Entropy Estimator

被引:0
作者
Zhang, Xiaowei [1 ]
Yao, Yuan [1 ]
Wang, Manman [3 ]
Shen, Jian [1 ]
Feng, Lei [4 ,5 ,6 ]
Hu, Bin [1 ,2 ]
机构
[1] Lanzhou Univ, Gansu Prov Key Lab Wearable Comp, Sch Informat Sci & Engn, Lanzhou, Gansu, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Biol Sci, CAS Ctr Excellence Brain Sci & Intelligence Techn, Beijing, Peoples R China
[3] Shenzhen City Tencent Comp Syst Co Ltd, Shenzhen, Peoples R China
[4] Capital Med Univ, Natl Clin Res Ctr Mental Disorders, Beijing, Peoples R China
[5] Capital Med Univ, Beijing Key Lab Mental Disorders, Beijing, Peoples R China
[6] Capital Med Univ, Beijing Anding Hosp, Beijing, Peoples R China
来源
2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) | 2017年
基金
中国国家自然科学基金;
关键词
Grassberger entropy; mutual information; feature selection; EEG;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Recently, Electroencephalogram (EEG) has become increasingly important in the role of psychiatric diagnosis and emotion recognition. However, many irrelevant features make it difficult to identify patterns accurately. Obtaining valid features from electroencephalogram can improve the classification and generalization performance. In this paper, an improved normalized mutual information feature selection algorithm which is based on Grassberger entropy estimator (G-NMIFS) is proposed for EEG data. We employ the k-Nearest Neighbor (kNN), Support Vector Machine (SVM), and Naive Bayes methods to compare the proposed approach with normalized mutual information feature selection using Naive estimator and Miller-adjust method. Experimental results on two EEG data sets show that the proposed method can select relevant subsets and improve classification performance effectively.
引用
收藏
页码:648 / 652
页数:5
相关论文
共 12 条
[1]  
[Anonymous], 2003, PHYSICS0307138 ARXIV
[2]   USING MUTUAL INFORMATION FOR SELECTING FEATURES IN SUPERVISED NEURAL-NET LEARNING [J].
BATTITI, R .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (04) :537-550
[3]  
Bazsó F, 2004, IEEE IJCNN, P2843
[4]  
Bradley M. M., 2007, Bradley, M. M. , Lang, P. J. (2007). The International Affective Digitized Sounds (IADS-2): Affective ratings of sounds and instruction manual (Tech. Rep. B-3). Gainesville, FL: University of Florida.
[5]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[6]  
Deriche M, 2001, INT CONF ACOUST SPEE, P1057, DOI 10.1109/ICASSP.2001.941101
[7]   Normalized Mutual Information Feature Selection [J].
Estevez, Pablo. A. ;
Tesmer, Michel ;
Perez, Claudio A. ;
Zurada, Jacek A. .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (02) :189-201
[8]   DEAP: A Database for Emotion Analysis Using Physiological Signals [J].
Koelstra, Sander ;
Muhl, Christian ;
Soleymani, Mohammad ;
Lee, Jong-Seok ;
Yazdani, Ashkan ;
Ebrahimi, Touradj ;
Pun, Thierry ;
Nijholt, Anton ;
Patras, Ioannis .
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2012, 3 (01) :18-31
[9]  
Kuang H, 2017, INT GEOSCI REMOTE SE, P470, DOI 10.1109/IGARSS.2017.8126994
[10]   Input feature selection for classification problems [J].
Kwak, N ;
Choi, CH .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (01) :143-159