Global well-posedness and stability of constant equilibria in parabolic-elliptic chemotaxis systems without gradient sensing

被引:103
作者
Ahn, Jaewook [1 ]
Yoon, Changwook [2 ]
机构
[1] Chung Ang Univ, Dept Math, Seoul 06974, South Korea
[2] Korea Univ, Coll Sci & Technol, Sejong 30019, South Korea
基金
新加坡国家研究基金会;
关键词
chemotaxis; motility function; global existence; Lyapunov functional; STATIONARY SOLUTIONS; EXISTENCE; BOUNDEDNESS; DIFFUSION;
D O I
10.1088/1361-6544/aaf513
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a Keller-Segel type parabolic-elliptic system involving nonlinear diffusion and chemotaxis u(t) = Delta(gamma(v)u), 0 = epsilon Delta v - v + u in a smoothly bounded domain Omega subset of R-n, n >= 1, under no-flux boundary conditions. The system contains a Fokker-Planck type diffusion with a motility function gamma(v) = v(-k), k > 0. The global existence of the unique bounded classical solutions is established without smallness of the initial data neither the convexity of the domain when n <= 2, k > 0 or n >= 3, k < 2/n-2. In addition, we find the conditions on parameters, k and epsilon, that make the spatially homogeneous equilibrium solution globally stable or linearly unstable.
引用
收藏
页码:1327 / 1351
页数:25
相关论文
共 27 条
[1]  
Alikakos N D., 1979, Commun Partial Differ Equ, V4, P827, DOI [DOI 10.1080/03605307908820113, 10.1080/03605307908820113]
[2]  
[Anonymous], 2015, ELLIPTIC PARTIAL DIF
[3]  
[Anonymous], 1992, Analyse fonctionnelle Theorie et application
[4]  
Biler P., 1999, Adv. Math. Sci. Appl, V9, P347
[5]   Starvation Driven Diffusion as a Survival Strategy of Biological Organisms [J].
Cho, Eunjoo ;
Kim, Yong-Jung .
BULLETIN OF MATHEMATICAL BIOLOGY, 2013, 75 (05) :845-870
[6]   Stripe Formation in Bacterial Systems with Density-Suppressed Motility [J].
Fu, Xiongfei ;
Tang, Lei-Han ;
Liu, Chenli ;
Huang, Jian-Dong ;
Hwa, Terence ;
Lenz, Peter .
PHYSICAL REVIEW LETTERS, 2012, 108 (19)
[7]   Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity [J].
Fujie, Kentarou ;
Senba, Takasi .
NONLINEARITY, 2016, 29 (08) :2417-2450
[8]   GLOBAL EXISTENCE AND BOUNDEDNESS IN A PARABOLIC-ELLIPTIC KELLER-SEGEL SYSTEM WITH GENERAL SENSITIVITY [J].
Fujie, Kentarou ;
Senba, Takasi .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (01) :81-102
[9]   Boundedness of solutions to parabolic-elliptic Keller-Segel systems with signal-dependent sensitivity [J].
Fujie, Kentarou ;
Winkler, Michael ;
Yokota, Tomomi .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (06) :1212-1224
[10]   Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory [J].
Grossi, M ;
Pistoia, A ;
Wei, JC .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2000, 11 (02) :143-175