Marcinkiewicz integral on Hardy spaces

被引:69
作者
Ding, Y [1 ]
Lu, SZ [1 ]
Xue, QY [1 ]
机构
[1] Beijing Normal Univ, Dept Math, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
42B25; 42B30;
D O I
10.1007/BF01275514
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that the Marcinkiewicz integral mu(Omega) is an operator of type (H-1, L-1) and of type (H-1,H-infinity, L-1,L-infinity). As a corollary of the results above, we obtain again the the weak type (1,1) boundedness of mu(Omega), but the smoothness condition assumed on Omega is weaker than Stein's condition.
引用
收藏
页码:174 / 182
页数:9
相关论文
共 9 条
  • [1] CONVOLUTION OPERATORS ON BANACH SPACE VALUED FUNCTIONS
    BENEDEK, A
    PANZONE, R
    CALDERON, AP
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1962, 48 (03) : 356 - &
  • [2] CALDERON AP, 1967, P S PURE MATH, V10, P56
  • [3] MAXIMAL ESTIMATES FOR CESARO AND RIESZ MEANS ON SPHERES
    COLZANI, L
    TAIBLESON, MH
    WEISS, G
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1984, 33 (06) : 873 - 889
  • [4] Colzani L., 1982, Ph. D. Thesis
  • [5] Lp-boundedness of Marcinkiewicz integrals with Hardy space function kernels
    Ding, Y
    Fan, DS
    Pan, YB
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2000, 16 (04): : 593 - 600
  • [6] FEFFERMAN R, 1987, STUD MATH, V85, P1
  • [7] KUTZ D, 1979, T AM MATH SOC, V255, P343
  • [8] Stein E., 1958, T. Am. Math. Soc., V88, P430, DOI [DOI 10.1090/S0002-9947-1958-0112932-2, 10.1090/S0002-9947-1958-0112932-2]
  • [9] STEIN EM, 1993, HARMONIC ANAL REAL V