Low-energy collective excitations in the neutron star inner crust

被引:56
作者
Chamel, N. [1 ]
Page, D. [2 ]
Reddy, S. [3 ]
机构
[1] Univ Libre Bruxelles, Inst Astron & Astrophys, B-1050 Brussels, Belgium
[2] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City, DF 04510, Mexico
[3] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA
来源
PHYSICAL REVIEW C | 2013年 / 87卷 / 03期
关键词
ENTRAINMENT COEFFICIENT; CONDUCTION NEUTRONS; EFFECTIVE-MASS; SUPERFLUID; EMISSION; EQUATION; NUCLEAR;
D O I
10.1103/PhysRevC.87.035803
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We study the low-energy collective excitations in the inner crust of the neutron star, where a neutron superfluid coexists with a Coulomb lattice of nuclei. The dispersion relation of the modes is calculated systematically from a microscopic theory including neutron band structure effects. These effects are shown to lead to a strong mixing between the Bogoliubov-Anderson bosons of the neutron superfluid and the longitudinal crystal lattice phonons. In addition, the speed of the transverse shear mode is greatly reduced as a large fraction of superfluid neutrons are entrained by nuclei. Not only does the much smaller velocity of the transverse mode increase the specific heat of the inner crust, it also decreases its electron thermal conductivity. These results may impact our interpretation of the thermal relaxation in accreting neutron stars. Due to strong mixing, the mean free path of the superfluid mode is found to be greatly reduced. Our results for the collective mode dispersion relations and their damping may also have implications for neutron star seismology. DOI: 10.1103/PhysRevC.87.035803
引用
收藏
页数:11
相关论文
共 57 条
[1]   Superfluid Heat Conduction and the Cooling of Magnetized Neutron Stars [J].
Aguilera, Deborah N. ;
Cirigliano, Vincenzo ;
Pons, Jose A. ;
Reddy, Sanjay ;
Sharma, Rishi .
PHYSICAL REVIEW LETTERS, 2009, 102 (09)
[2]   Equation of state of nucleon matter and neutron star structure [J].
Akmal, A ;
Pandharipande, VR ;
Ravenhall, DG .
PHYSICAL REVIEW C, 1998, 58 (03) :1804-1828
[3]   RANDOM-PHASE APPROXIMATION IN THE THEORY OF SUPERCONDUCTIVITY [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 112 (06) :1900-1916
[4]   Superfluid signatures in magnetar seismology [J].
Andersson, N. ;
Glampedakis, K. ;
Samuelsson, L. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 396 (02) :894-899
[5]  
[Anonymous], 1958, FORTSCHR PHYS, DOI DOI 10.1002/PROP.19580061102
[6]  
Ashcroft N., 2011, Solid State Physics
[7]   A realistic model of superfluidity in the neutron star inner crust [J].
Baldo, M. ;
Saperstein, E. E. ;
Tolokonnikov, S. V. .
EUROPEAN PHYSICAL JOURNAL A, 2007, 32 (01) :97-108
[8]   Superfluidity in nuclear and neutron matter [J].
Baldo, M ;
Saperstein, EE ;
Tolokonnikov, SV .
NUCLEAR PHYSICS A, 2005, 749 :42C-52C
[9]   MAPPING CRUSTAL HEATING WITH THE COOLING LIGHT CURVES OF QUASI-PERSISTENT TRANSIENTS [J].
Brown, Edward F. ;
Cumming, Andrew .
ASTROPHYSICAL JOURNAL, 2009, 698 (02) :1020-1032
[10]   CONTINUED COOLING OF THE CRUST IN THE NEUTRON STAR LOW-MASS X-RAY BINARY KS 1731-260 [J].
Cackett, Edward M. ;
Brown, Edward F. ;
Cumming, Andrew ;
Degenaar, Nathalie ;
Miller, Jon M. ;
Wijnands, Rudy .
ASTROPHYSICAL JOURNAL LETTERS, 2010, 722 (02) :L137-L141