TRAVELLING WAVE SOLUTIONS IN DELAYED CELLULAR NEURAL NETWORKS WITH NONLINEAR OUTPUT

被引:0
作者
Liu, Xiuxiang [1 ]
Weng, Peixuan [1 ]
Xu, Zhiting [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
关键词
Cellular neural networks; lattice dynamical system; travelling wave solutions; monotone iteration;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns the existence of travelling wave solutions of delayed cellular neural networks distributed in a 1-dimensional lattice with nonlinear output. Under appropriate assumptions, we prove the existence of travelling waves and extend some known results.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Attractiveness of pseudo almost periodic solutions for delayed cellular neural networks in the context of measure theory
    Bekolle, David
    Ezzinbi, Khalil
    Fatajou, Samir
    Danga, Duplex Elvis Houpa
    Besseme, Fritz Mbounja
    NEUROCOMPUTING, 2021, 435 (435) : 253 - 263
  • [22] Travelling wave solutions for a nonlinear variant of the PHI-four equation
    Deng, Xijun
    Zhao, Ming
    Li, Xi
    MATHEMATICAL AND COMPUTER MODELLING, 2009, 49 (3-4) : 617 - 622
  • [23] Travelling wave solutions in a negative nonlinear diffusion-reaction model
    Li, Yifei
    van Heijster, Peter
    Marangell, Robert
    Simpson, Matthew J.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2020, 81 (6-7) : 1495 - 1522
  • [24] The new travelling wave solutions for a class of nonlinear partial differential equations
    Ma, Zhimin
    Sun, Yuhui
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 43 (13): : 459 - 469
  • [25] A set of stability criteria for delayed cellular neural networks
    Cao, J
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2001, 48 (04): : 494 - 498
  • [26] Global asymptotic stability of delayed cellular neural networks
    Zhang, Huaguang
    Wang, Zhanshan
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2007, 18 (03): : 947 - 950
  • [27] Travelling wave solutions for (N + 1)-dimensional nonlinear evolution equations
    Jonu Lee
    Rathinasamy Sakthivel
    Pramana, 2010, 75 : 565 - 578
  • [28] Deformation of traveling waves in delayed cellular neural networks
    Weng, PX
    Wu, JH
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (04): : 797 - 813
  • [29] Stationary solutions analysis of cellular neural networks
    Ke, YQ
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (01): : 163 - 168
  • [30] Morphological and wave segmentation by cellular neural networks
    Szabó, T
    Szolgay, P
    NEUREL 2004: SEVENTH SEMINAR ON NEURAL NETWORK APPLICATIONS IN ELECTRICAL ENGINEERING, PROCEEDINGS, 2004, : 109 - 112