Enabling large-scale genome editing at repetitive elements by reducing DNA nicking

被引:33
作者
Smith, Cory J. [1 ,2 ]
Castanon, Oscar [1 ,2 ,3 ]
Said, Khaled [1 ,2 ]
Volf, Verena [1 ,2 ,4 ]
Khoshakhlagh, Parastoo [1 ,2 ]
Hornick, Amanda [1 ,2 ]
Ferreira, Raphael [5 ]
Wu, Chun-Ting [1 ,2 ]
Guell, Marc [6 ]
Garg, Shilpa [1 ]
Ng, Alex H. M. [1 ,2 ]
Myllykallio, Hannu [3 ]
Church, George M. [1 ,2 ]
机构
[1] Harvard Med Sch, Dept Genet, Boston, MA 02115 USA
[2] Wyss Inst Biol Inspired Engn, Boston, MA 02115 USA
[3] Ecole Polytech, INSERM, Inst Polytech Paris, LOB,CNRS, F-91128 Palaiseau, France
[4] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[5] Chalmers Univ Technol, Dept Biol & Biol Engn, SE-41296 Gothenburg, Sweden
[6] Pompeu Fabra Univ, Barcelona Biomed Res Pk, Barcelona 08003, Spain
基金
美国国家卫生研究院;
关键词
L1; RETROTRANSPOSITION; STEM-CELLS; BASE; ORGANISMS; MUTATION; REPAIR; MOBILE;
D O I
10.1093/nar/gkaa239
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To extend the frontier of genome editing and enable editing of repetitive elements of mammalian genomes, we made use of a set of dead-Cas9 base editor (dBE) variants that allow editing at tens of thousands of loci per cell by overcoming the cell death associated with DNA double-strand breaks and single-strand breaks. We used a set of gRNAs targeting repetitive elements-ranging in target copy number from about 32 to 161 000 per cell. dBEs enabled survival after large-scale base editing, allowing targeted mutations at up to similar to 13 200 and similar to 12 200 loci in 293T and human induced pluripotent stem cells (hiP-SCs), respectively, three orders of magnitude greater than previously recorded. These dBEs can overcome current on-target mutation and toxicity barriers that prevent cell survival after large-scale genome engineering.
引用
收藏
页码:5183 / 5195
页数:13
相关论文
共 54 条
[1]   First-in-human Phase 1 CRISPR Gene Editing Cancer Trials: Are We Ready? [J].
Baylis, Francoise ;
McLeod, Marcus .
CURRENT GENE THERAPY, 2017, 17 (04) :309-319
[2]   Retrotransposon-induced mosaicism in the neural genome [J].
Bodea, Gabriela O. ;
McKelvey, Eleanor G. Z. ;
Faulkner, Geoffrey J. .
OPEN BIOLOGY, 2018, 8 (07)
[3]   The Genome Project-Write [J].
Boeke, Jef D. ;
Church, George ;
Hessel, Andrew ;
Kelley, Nancy J. ;
Arkin, Adam ;
Cai, Yizhi ;
Carlson, Rob ;
Chakravarti, Aravinda ;
Cornish, Virginia W. ;
Holt, Liam ;
Isaacs, Farren J. ;
Kuiken, Todd ;
Lajoi, Marc ;
Lessor, Tracy ;
Lunshof, Jeantine ;
Maurano, Matthew T. ;
Mitchell, Leslie A. ;
Rine, Jasper ;
Rosser, Susan ;
Sanjana, Neville E. ;
Silver, Pamela A. ;
Valle, David ;
Wang, Harris ;
Way, Jeffrey C. ;
Yang, Luhan .
SCIENCE, 2016, 353 (6295) :126-127
[4]  
Byrne Susan M, 2015, Curr Protoc Stem Cell Biol, V35, DOI 10.1002/9780470151808.sc05a08s35
[5]  
Castanon O., 2020, bioRxiv, DOI [10.1101/2020.02.03.922146, DOI 10.1101/2020.02.03.922146]
[6]   In Vivo Base Editing of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) as a Therapeutic Alternative to Genome Editing [J].
Chadwick, Alexandra C. ;
Wang, Xiao ;
Musunuru, Kiran .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2017, 37 (09) :1741-+
[7]  
Chavez A, 2015, NAT METHODS, V12, P326, DOI [10.1038/nmeth.3312, 10.1038/NMETH.3312]
[8]   Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells [J].
Coufal, Nicole G. ;
Luis Garcia-Perez, Jose ;
Peng, Grace E. ;
Marchetto, Maria C. N. ;
Muotri, Alysson R. ;
Mu, Yangling ;
Carson, Christian T. ;
Macia, Angela ;
Moran, John V. ;
Gage, Fred H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (51) :20382-20387
[9]   L1 retrotransposition in human neural progenitor cells [J].
Coufal, Nicole G. ;
Garcia-Perez, Jose L. ;
Peng, Grace E. ;
Yeo, Gene W. ;
Mu, Yangling ;
Lovci, Michael T. ;
Morell, Maria ;
O'Shea, K. Sue ;
Moran, John V. ;
Gage, Fred H. .
NATURE, 2009, 460 (7259) :1127-1131
[10]  
De Cecco M, 2019, NATURE, V572, pE5, DOI [10.1038/s41586-019-1350-9, 10.1038/s41586-018-0784-9]