GENERALIZED 2-LOCAL ISOMETRIES OF SPACES OF CONTINUOUSLY DIFFERENTIABLE FUNCTIONS MALIHEH HOSSEINI

被引:10
作者
Hosseini, Maliheh [1 ]
机构
[1] KN Toosi Univ Technol, Dept Math, Tehran 163151618, Iran
关键词
2-local isometry; continuously differentiable function; real-linear isometry; REAL-LINEAR ISOMETRIES; DERIVATIONS; ALGEBRAS; HOMOMORPHISMS;
D O I
10.2989/16073606.2017.1344889
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C-(n) (I) denote the Banach space of n-times continuously differentiable functions on I = [0, 1], equipped with the norm vertical bar vertical bar f vertical bar vertical bar(n) = max {vertical bar f(0)vertical bar, vertical bar f'(0)vertical bar,..., vertical bar f((n-1))(0)vertical bar, vertical bar vertical bar f(n)vertical bar vertical bar(infinity)} (f is an element of C-(n) (I)), where vertical bar vertical bar center dot vertical bar vertical bar(infinity) is the supremum norm. We call a map T : C-(n) (I) -> C-(n)(I) a 2-local real-linear isometry if for each pair f, g in C-(n)(I), there exists a surjective real-linear isometry T-f,T-g : C-(n)(I) -> C-(n)(I) such that T(f) = T-f,T-g(f) and T(g) = T-f,T-g(g). In this paper we show that every 2-local real-linear isometry of C-(n)(I) is a surjective real-linear isometry. Moreover, a complete description of such maps is presented.
引用
收藏
页码:1003 / 1014
页数:12
相关论文
共 32 条
  • [1] [Anonymous], ARXIV150905701V1
  • [2] A survey on local and 2-local derivations on C*- and von Neuman algebras
    Ayupov, Shavkat
    Kudaybergenov, Karimbergen
    Peralta, Antonio M.
    [J]. TOPICS IN FUNCTIONAL ANALYSIS AND ALGEBRA, 2016, 672 : 73 - 126
  • [3] 2-Local derivations on von Neumann algebras
    Ayupov, Shavkat
    Kudaybergenov, Karimbergen
    [J]. POSITIVITY, 2015, 19 (03) : 445 - 455
  • [4] 2-Local derivations on finite-dimensional Lie algebras
    Ayupov, Shavkat
    Kudaybergenov, Karimbergen
    Rakhimov, Isamiddin
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 474 : 1 - 11
  • [5] Burgos M, 2015, RACSAM REV R ACAD A, V109, P551, DOI 10.1007/s13398-014-0200-8
  • [6] 2-local triple homomorphisms on von Neumann algebras and JBW*-triples
    Burgos, Maria J.
    Fernandez-Polo, Francisco J.
    Garces, Jorge J.
    Peralta, Antonio M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 426 (01) : 43 - 63
  • [7] Cabello J.C., BANACH J MA IN PRESS
  • [8] Weak-2-local symmetric maps on C*-algebras
    Cabello, Juan Carlos
    Peralta, Antonio . M.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 494 : 32 - 43
  • [9] 2-local Lie isomorphisms of operator algebras on Banach spaces
    Chen, Lin
    Huang, Lizhong
    Lu, Fangyan
    [J]. STUDIA MATHEMATICA, 2015, 229 (01) : 1 - 11
  • [10] REAL CHARACTERIZATIONS OF FUNCTION ALGEBRAS AMONGST FUNCTION-SPACES
    ELLIS, AJ
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1990, 22 : 381 - 385