An angular fluidic channel for prism-free surface-plasmon-assisted fluorescence capturing

被引:56
作者
Nomura, Ken-ichi [1 ]
Gopinath, Subash C. B. [2 ]
Lakshmipriya, Thangavel [2 ]
Fukuda, Nobuko [1 ]
Wang, Xiaomin [3 ]
Fujimaki, Makoto [2 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Flexible Elect Res Ctr, Tsukuba, Ibaraki 3058565, Japan
[2] Natl Inst Adv Ind Sci & Technol, Elect & Photon Res Inst, Tsukuba, Ibaraki 3058565, Japan
[3] Natl Inst Adv Ind Sci & Technol, Nanoelect Res Inst, Tsukuba, Ibaraki 3058562, Japan
关键词
ENHANCED FLUORESCENCE; RESONANCE; APTAMER; SENSOR; SPECTROSCOPY; IMMUNOSENSOR; VIRUSES; HIV-1;
D O I
10.1038/ncomms3855
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Surface plasmon excitation provides stronger enhancement of the fluorescence intensity and better sensitivity than other sensing approaches but requires optimal positioning of a prism to ensure optimum output of the incident light. Here we describe a simple, highly sensitive optical sensing system combining surface plasmon excitation and fluorescence to address this limitation. V-shaped fluidic channels are employed to mimic the functions of a prism, sensing plate, and flow channel in a single setup. Superior performance is demonstrated for different biomolecular recognition reactions on a self-assembled monolayer, and the sensitivity reaches 100 fM for biotin-streptavidin interactions. Using an antibody as a probe, we demonstrate the detection of intact influenza viruses at 0.2HA units ml(-1) levels. The convenient sensing system developed here has the advantages of being prism-free and requiring less sample (1-2 mu l), making this platform suitable for use in situations requiring low sample volumes.
引用
收藏
页数:7
相关论文
共 35 条
[1]  
[Anonymous], 1998, Handbook of Optical Constants of Solids
[2]  
[Anonymous], 1998, HDB OPTICAL CONSTANT
[3]   Microfluidics-based diagnostics of infectious diseases in the developing world [J].
Chin, Curtis D. ;
Laksanasopin, Tassaneewan ;
Cheung, Yuk Kee ;
Steinmiller, David ;
Linder, Vincent ;
Parsa, Hesam ;
Wang, Jennifer ;
Moore, Hannah ;
Rouse, Robert ;
Umviligihozo, Gisele ;
Karita, Etienne ;
Mwambarangwe, Lambert ;
Braunstein, Sarah L. ;
van de Wijgert, Janneke ;
Sahabo, Ruben ;
Justman, Jessica E. ;
El-Sadr, Wafaa ;
Sia, Samuel K. .
NATURE MEDICINE, 2011, 17 (08) :1015-U138
[4]   Assays for aptamer-based platforms [J].
Citartan, Marimuthu ;
Gopinath, Subash C. B. ;
Tominaga, Junji ;
Tan, Soo-Choon ;
Tang, Thean-Hock .
BIOSENSORS & BIOELECTRONICS, 2012, 34 (01) :1-11
[5]  
de la Rica R, 2012, NAT NANOTECHNOL, V7, P821, DOI [10.1038/nnano.2012.186, 10.1038/NNANO.2012.186]
[6]   Biosensors based on surface plasmon-enhanced fluorescence spectroscopy [J].
Dostalek, Jakub ;
Knoll, Wolfgang .
BIOINTERPHASES, 2008, 3 (03) :FD12-FD22
[7]   Neu5Acα2,6Gal and Neu5Acα2,3Gal receptor specificities on influenza viruses determined by a waveguide-mode sensor [J].
Gopinath, S. C. B. ;
Awazu, K. ;
Fujimaki, M. ;
Shimizu, K. .
ACTA BIOMATERIALIA, 2013, 9 (02) :5080-5087
[8]  
Green N M, 1975, Adv Protein Chem, V29, P85, DOI 10.1016/S0065-3233(08)60411-8
[9]   Selective Catecholamine Recognition with NeuroSensor 521: A Fluorescent Sensor for the Visualization of Norepinephrine in Fixed and Live Cells [J].
Hettie, Kenneth S. ;
Liu, Xin ;
Gillis, Kevin D. ;
Glass, Timothy E. .
ACS CHEMICAL NEUROSCIENCE, 2013, 4 (06) :918-923
[10]  
Hicke BJ, 2006, J NUCL MED, V47, P668