Interest of the Multi-Resolution Analysis based on the Co-occurrence Matrix for Texture Classification

被引:0
作者
Ben Othmen, M. [1 ]
Sayadi, A. [2 ,3 ]
Fnaiech, F. [2 ,3 ]
机构
[1] ESSTT, Res Grp SICISI, 5 Av Taha Hussein, Tunis 1008, Tunisia
[2] ESSTT, SICISI, Tunis 1008, Tunisia
[3] Univ Picardie, LTI Grp, F-80000 Amiens, France
来源
2008 IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, VOLS 1 AND 2 | 2008年
关键词
Classification; Wavelet; Co-occurrence; Euclidian Distance; Classifier; Texture;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wavelet transform provides several important characteristics which can be used in a texture analysis and classification. In this work, an efficient texture classification method, which combines concepts from wavelet and co-occurrence matrices, is presented. An Euclidian distance classifier is used to evaluate the various methods of classification. A comparative study is essential to determine the ideal method. Using this conjecture, we developed a novel feature set for texture classification and demonstrate its effectiveness.
引用
收藏
页码:831 / +
页数:2
相关论文
共 14 条
[1]  
AHMED K, 2005, INT C SETIT MARS SOU
[2]  
Amet Ahmet Latif, EFFICIENT METHOD TEX
[3]  
Brodatz P., 1956, TEXTURES PHOTOGRAPHI
[4]  
GERMAIN C, 1997, THESIS U BORDEAUX 1
[5]   THE TWO-DIMENSIONAL ADAPTIVE LMS (TDLMS) ALGORITHM [J].
HADHOUD, MM ;
THOMAS, DW .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (05) :485-494
[6]  
HELA SM, 2005, INT C SCI EL TECHN I
[7]  
Kara B., 2003, IJCI PROC INT C SIGN, V1, P159
[8]   An efficient method for texture defect detection:: sub-band domain co-occurrence matrices [J].
Latif-Amet, A ;
Ertüzün, A ;
Erçil, A .
IMAGE AND VISION COMPUTING, 2000, 18 (6-7) :543-553
[9]  
Materka M. Strzelecki, 1998, B11 COST TU LODZ I E
[10]  
MJAHED M, C JTEA 2000 NAB HAMM, P89